Introduction to Combinatorial and Computational Geometry 2024/2025
Zaklady kombinatoricke a vypocetni geometrie 2024/2025
(Jan Kyncl, Pavel Valtr, KAM)
Lecture: Tuesday at 14:00 in S3. The lectures are in English this year, but you can also ask questions in Czech or Slovak.
Prednaska: V utery od 14:00 v S3. Prednaska je letos v anglictine, muzete se ale ptat i cesky nebo slovensky.
Exercise sessions: after the lecture at 15:40 in S8 according to the schedule on the
exercise webpage.
Cviceni: po prednasce 15:40 v S8 podle rozvrhu na
strance cviceni.
Extent of teaching: WINTER semester 2/2 (Exam and Exercise credit). Entry in SIS, syllabus
Rozsah vyuky: ZIMNI semestr 2/2 Z, Zk. Stranka v SISu, sylabus
Annotation
Discrete geometry investigates combinatorial properties of geometric objects such as finite point sets or convex sets in Euclidean spaces. Computational geometry considers the design of efficient algorithms for computing with geometric configurations, and discrete geometry serves as its mathematical foundation. Part I of the course is a concise introduction.
The lecture will be very similar to the last year.
The contents of Part II varies among the years, each year covering a few selected topics in more depth.
Anotace
Vypocetni geometrie se zabyva navrhem efektivnich algoritmu pro geometricke
problemy v rovine i ve vicedimenzionalnim prostoru (napr. je-li dano n
bodu v rovine, jak co nejefektivneji najit dvojici bodu s nejmensi vzdalenosti).
Takove problemy jsou motivovany aplikacemi v pocitacove grafice, prostorovem
modelovani (napr. molekul, budov, soucastek), geografickych informacnich
systemech a pod. Pri analyze takovych algoritmu se potrebuje kombinatoricka
geometrie, studujici kombinatoricke vlastnosti geometrickych konfiguraci,
konvexnich mnozin a pod. Vysledky jsou dulezite i z ciste matematickeho
hlediska, napr. v teorii cisel. V teto uvodni prednasce se probiraji zakladni
pojmy a metody, s durazem na matematicky zaklad (jine mozne podani by bylo
z vice "informatickeho" hlediska, s durazem na datove struktury, implementaci
algoritmu apod.). O naplni prednasky si muzete udelat lepsi predstavu
podle latky probirane
v minulych letech.
Literature
-
[M1] Jiri Matousek's lecture notes Introduction to Discrete Geometry, ITI Series 2003-150, available in the Computer Science library of MFF UK.
Here is a postscript file with two pages of text on one A4 page, intended for printing.
Here is a PDF file for readers and tablets.
- The lecture notes are, in fact, a selection of topics from the book J. Matousek: Lectures on Discrete Geometry.
- A text for the part about incremental geometric algorithms is available
here
(12 pages).
- Chan's algorithm for the construction of the convex hull: doi:10.1007/BF02712873
- A standard introductory text about computational geometry:
M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf: Computational
Geometry: Algorithms and Applications, Springer-Verlag, Berlin, 1997.
The computer science library of MFF UK has a few copies.
-
J. Pach, P. Agarwal: Combinatorial Geometry, Cambridge University Press
1995
Literatura
-
Skripta Jiriho Matouska Introduction to Discrete Geometry
vysla v ITI Seriich (preprintova rada Institutu teoreticke informatiky MFF UK)
pod cislem 2003-150 a je k dispozici v informaticke knihovne MFF UK.
Tady jsou take jako
postscriptovy soubor, v nemz jsou pro usporu mista 2 male
stranky na jedne strance A4. Je urcen hlavne pro dvoustranny tisk
a ma vlevo okraj na svazani. A
zde PDF soubor
mysleny pro ctecky a tablety.
- Predchozi text je ve skutecnosti vyber casti obvykle probiranych
v prednasce z knihy J. Matousek: Lectures on Discrete Geometry.
- Text k casti o inkrementalnich geometrickych
algoritmech je k dispozici
zde
(12 str).
- Chanuv algoritmus pro konstrukci konvexniho obalu: doi:10.1007/BF02712873
- Kapitola "Geometricke algoritmy" ve skriptech Martina Marese
- Standardni uvodni text o vypocetni geometrii je
M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf: Computational
Geometry: Algorithms and Applications, Springer-Verlag, Berlin, 1997.
Informaticke oddeleni knihovny ma nekolik exemplaru.
-
J. Pach, P. Agarwal: Combinatorial Geometry, Cambridge University Press
1995
Topics covered:
1.10. (JK)
- Introductory information
- Basic notions: d-dimensional Euclidean space R^d (the set of d-tuples of real numbers), hyperplane, closed halfspace
- Afinne subspace, afinne hull, afinne combination, afinne (in)dependence
- Convex set, convex hull, it is the set of all convex combinations (sketch of proof)
- Caratheodory's theorem (only statement, the proof is an exercise)
- Hyperplane separation theorem (statement)
8.10. (JK)
- Hyperplane separation theorem: sketch of proof for the case of two compact sets, idea for the case of bounded sets
- Radon's theorem
- Helly's theorem
- Infinite version of Helly's theorem
- Existence of a centerpoint
- The ham sandwich theorem (only statement)
15.10. (JK)
- Center transversal theorem (only statement)
- Drawing of a graph, crossing number of a graph
- Crossing lemma
- Incidences between points and lines, examples
22.10. (JK)
- Lower bound on the number of incidences between n points and n lines
- Szemeredi–Trotter theorem about maximum number of incidences between points and lines
- Upper bound O(n^{4/3}) on the number of unit distances (only statement)
- Lower bound n^{1+c/(log log n)} on the number of unit distances (description of the construction, no proof)
- Minkowski's theorem for the integer lattice
- Application of Minkowski's theorem: looking out of a regular forest
...
3.12. (JK)
- Voronoi diagram, regions (cells), faces; regions are convex polyhedra
- Applications of Voronoi diagrams
- Delaunay triangulation (two definitions), properties without proofs
- Voronoi diagrams in R^d are projections of polyhedra in R^{d+1} (proof using hyperplanes tangent to the unit paraboloid)
- An asymptotic upper bound on the number of faces of all regions of the Voronoi diagram
- Power diagrams, their properties without proofs
10.12. (JK)
- Arrangement of hyperplanes in R^d, cells, faces
- Simple arrangement of hyperplanes, the exact number of cells of a simple arrangement of n hyperplanes (proof by double induction on n, d)
- Second proof for the exact number of cells of a simple arrangement of n hyperplanes (by induction on d)
- Arrangement of arbitrary subsets of R^d
- Arrangement of zero sets of polynomials in d variables, sign patterns of a collection of polynomials, Milnor–Thom theorem, asymptotic and more precise version (no proof)
Temata prednasek:
1.10. (JK)
- Uvodni informace
- Zakladni pojmy: d-rozmerny euklidovsky prostor R^d (mnozina usporadanych d-tic realnych cisel), nadrovina, uzavreny poloprostor
- Afinni podprostor, afinni obal, afinni kombinace, afinni (ne)zavislost
- Konvexni mnozina, konvexni obal, je roven mnozine vsech konvexnich kombinaci (naznak dukazu)
- Caratheodoryho veta (jen zneni, dukaz je jako cviceni)
- Veta o oddelovani nadrovinou (zneni)
8.10. (JK)
- Veta o oddelovani nadrovinou: naznak dukazu, ze disjunktni kompaktni konvexni mnoziny lze ostre oddelit, myslenka pro pripad omezenych mnozin
- Radonova veta
- Hellyho veta
- Nekonecna verze Hellyho vety
- Veta o centru
- Veta o sendvici (jen zneni)
15.10. (JK)
- Center transversal theorem (jen zneni)
- Nakresleni grafu, prusecikove cislo grafu
- Prusecikove lemma
- Incidence mezi body a primkami, priklady
22.10. (JK)
- Dolni odhad na pocet incidenci n bodu a n primek
- Szemerediova–Trotterova veta o maximalnim poctu incidenci bodu a primek
- Horni odhad O(n^{4/3}) na pocet jednotkovych vzdalenosti (jen zneni)
- Dolni odhad n^{1+c/(log log n)} na pocet jednotkovych vzdalenosti (popis konstrukce, bez dukazu)
- Minkowskeho veta pro celociselnou mrizku
- Aplikace Minkowskeho vety: vyhlizeni z pravidelneho lesika
...
3.12. (JK)
- Voroneho diagram, regiony (bunky), steny; regiony jsou konvexni polyedry
- Aplikace Voroneho diagramu
- Delaunayova triangulace (dve definice), vlastnosti bez dukazu
- Voroneho diagramy v R^d jsou projekcemi polyedru v R^{d+1} (dukaz vyuzivajici tecne nadroviny k jednotkovemu paraboloidu)
- Asymptoticky horni odhad na celkovy pocet sten vsech regionu Voroneho diagramu
- Power diagramy, jejich vlastnosti bez dukazu
10.12. (JK)
- Arrangement nadrovin v R^d, bunky, steny
- Jendoduchy arrangement nadrovin, presny pocet bunek jednoducheho arrangementu n nadrovin v R^d (dukaz dvojitou indukci podle n, d)
- Druhy dukaz pro presny pocet bunek jednoducheho arrangementu n nadrovin v R^d (indukci podle d)
- Arrangement libovolnych podmnozin R^d
- Arrangement nulovych mnozin polynomu v d promennych, znamenkove kombinace souboru polynomu, Milnorova–Thomova veta, asymptoticka a presnejsi verze (bez dukazu)