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Convexity

We begin with a review of basic geometric notions such as hyperplanes
and affine subspaces in R

d, and we spend some time by discussing the
notion of general position. Then we consider fundamental properties of
convex sets in R

d, such as a theorem about the separation of disjoint
convex sets by a hyperplane and Helly’s theorem.

1.1 Linear and Affine Subspaces, General Position

Linear subspaces. Let Rd denote the d-dimensional Euclidean space.
The points are d-tuples of real numbers, x = (x1, x2, . . . , xd).

The space R
d is a vector space, and so we may speak of linear sub-

spaces, linear dependence of points, linear span of a set, and so on. A
linear subspace of Rd is a subset closed under addition of vectors and un-
der multiplication by real numbers. What is the geometric meaning? For
instance, the linear subspaces of R2 are the origin itself, all lines passing
through the origin, and the whole of R2. In R

3, we have the origin, all
lines and planes passing through the origin, and R

3.

Affine notions. An arbitrary line in R
2, say, is not a linear subspace

unless it passes through 0. General lines are what are called affine sub-
spaces. An affine subspace of Rd has the form x+L, where x ∈ R

d is some
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vector and L is a linear subspace of Rd. Having defined affine subspaces,
the other “affine” notions can be constructed by imitating the “linear”
notions.

What is the affine hull of a set X ⊆ R
d? It is the intersection of all

affine subspaces of Rd containing X . As is well known, the linear span of
a set X can be described as the set of all linear combinations of points
of X . What is an affine combination of points a1, a2, . . . , an ∈ R

d that
would play an analogous role? To see this, we translate the whole set
by −an, so that an becomes the origin, we make a linear combination,
and we translate back by +an. This yields an expression of the form
β1(a1 − an) + β2(a2 − an) + · · ·+ βn(an − an) + an = β1a1 + β2a2 + · · ·+
βn−1an−1 + (1 − β1 − β2 − · · · − βn−1)an, where β1, . . . , βn are arbitrary
real numbers. Thus, an affine combination of points a1, . . . , an ∈ R

d is
an expression of the form

α1a1 + · · ·+ αnan, where α1, . . . , αn ∈ R and α1 + · · ·+ αn = 1.

Then indeed, it is not hard to check that the affine hull of X is the set
of all affine combinations of points of X .

The affine dependence of points a1, . . . , an means that one of them
can be written as an affine combination of the others. This is the same as
the existence of real numbers α1, α2, . . . αn, at least one of them nonzero,
such that both

α1a1 + α2a2 + · · ·+ αnan = 0 and α1 + α2 + · · ·+ αn = 0.

(Note the difference: In an affine combination, the αi sum to 1, while in
an affine dependence, they sum to 0.)

Affine dependence of a1, . . . , an is equivalent to linear dependence of
the n−1 vectors a1−an, a2−an, . . . , an−1−an. Therefore, the maximum
possible number of affinely independent points in R

d is d+1.
Another way of expressing affine dependence uses “lifting” one dimen-

sion higher. Let bi = (ai, 1) be the vector in R
d+1 obtained by appending

a new coordinate equal to 1 to ai; then a1, . . . , an are affinely dependent
if and only if b1, . . . , bn are linearly dependent. This correspondence of
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affine notions in R
d with linear notions in R

d+1 is quite general. For
example, if we identify R

2 with the plane x3 = 1 in R
3 as in the picture,

0

x3 = 0

x3 = 1

then we obtain a bijective correspondence of the k-dimensional linear sub-
spaces of R3 that do not lie in the plane x3 = 0 with (k−1)-dimensional
affine subspaces of R2. The drawing shows a 2-dimensional linear sub-
space of R3 and the corresponding line in the plane x3 = 1. (The same
works for affine subspaces of Rd and linear subspaces of Rd+1 not con-
tained in the subspace xd+1 = 0.)

Let a1, a2, . . . , ad+1 be points in R
d, and let A be the d × d matrix

with ai − ad+1 as the ith column, i = 1, 2, . . . , d. Then a1, . . . , ad+1 are
affinely independent if and only if A has d linearly independent columns,
and this is equivalent to det(A) 6= 0. We have a useful criterion of affine
independence using a determinant.

Affine subspaces of Rd of certain dimensions have special names. A
(d−1)-dimensional affine subspace of R

d is called a hyperplane (while
the word plane usually means a 2-dimensional subspace of Rd for any d).
One-dimensional subspaces are lines, and a k-dimensional affine subspace
is often called a k-flat .

A hyperplane is usually specified by a single linear equation of the
form a1x1 + a2x2 + · · · + adxd = b. We usually write the left-hand side
as the scalar product 〈a, x〉. So a hyperplane can be expressed as the set
{x ∈ R

d: 〈a, x〉 = b} where a ∈ R
d \ {0} and b ∈ R. A (closed) half-space

in R
d is a set of the form {x ∈ R

d: 〈a, x〉 ≥ b} for some a ∈ R
d \ {0}; the

hyperplane {x ∈ R
d: 〈a, x〉 = b} is its boundary.

General k-flats can be given either as intersections of hyperplanes
or as affine images of Rk (parametric expression). In the first case, an
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intersection of k hyperplanes can also be viewed as a solution to a system
Ax = b of linear equations, where x ∈ R

d is regarded as a column vector,
A is a k × d matrix, and b ∈ R

k. (As a rule, in formulas involving
matrices, we interpret points of Rd as column vectors.)

An affine mapping f :Rk → R
d has the form f : y 7→ By + c for some

d × k matrix B and some c ∈ R
d, so it is a composition of a linear map

with a translation. The image of f is a k′-flat for some k′ ≤ min(k, d).
This k′ equals the rank of the matrix B.

General position. “We assume that the points (lines, hyperplanes,. . . )
are in general position.” This magical phrase appears in many proofs.
Intuitively, general position means that no “unlikely coincidences” hap-
pen in the considered configuration. For example, if 3 points are chosen
in the plane without any special intention, “randomly,” they are unlikely
to lie on a common line. For a planar point set in general position, we
always require that no three of its points be collinear. For points in R

d

in general position, we assume similarly that no unnecessary affine de-
pendencies exist: No k ≤ d+1 points lie in a common (k−2)-flat. For
lines in the plane in general position, we postulate that no 3 lines have a
common point and no 2 are parallel.

The precise meaning of general position is not fully standard: It may
depend on the particular context, and to the usual conditions mentioned
above we sometimes add others where convenient. For example, for a
planar point set in general position we can also suppose that no two
points have the same x-coordinate.

What conditions are suitable for including into a “general position”
assumption? In other words, what can be considered as an unlikely co-
incidence? For example, let X be an n-point set in the plane, and let
the coordinates of the ith point be (xi, yi). Then the vector v(X) =
(x1, x2, . . . , xn, y1, y2, . . . , yn) can be regarded as a point of R2n. For a
configuration X in which x1 = x2, i.e., the first and second points have
the same x-coordinate, the point v(X) lies on the hyperplane {x1 = x2} in
R

2n. The configurations X where some two points share the x-coordinate
thus correspond to the union of

(

n
2

)

hyperplanes in R
2n. Since a hyper-

plane in R
2n has (2n-dimensional) measure zero, almost all points of R2n
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correspond to planar configurations X with all the points having distinct
x-coordinates. In particular, if X is any n-point planar configuration
and ε > 0 is any given real number, then there is a configuration X ′,
obtained from X by moving each point by distance at most ε, such that
all points of X ′ have distinct x-coordinates. Not only that: almost all
small movements (perturbations) of X result in X ′ with this property.

This is the key property of general position: configurations in gen-
eral position lie arbitrarily close to any given configuration (and they
abound in any small neighborhood of any given configuration). Here
is a fairly general type of condition with this property. Suppose that
a configuration X is specified by a vector t = (t1, t2, . . . , tm) of m real
numbers (coordinates). The objects of X can be points in R

d, in which
case m = dn and the tj are the coordinates of the points, but they can
also be circles in the plane, with m = 3n and the tj expressing the center
and the radius of each circle, and so on. The general position condition
we can put on the configuration X is p(t) = p(t1, t2, . . . , tm) 6= 0, where
p is some nonzero polynomial in m variables. Here we use the following
well-known fact: For any nonzero m-variate polynomial p(t1, . . . , tm), the
zero set {t ∈ R

m: p(t) = 0} has measure 0 in R
m.

Therefore, almost all configurations X satisfy p(t) 6= 0. So any con-
dition that can be expressed as p(t) 6= 0 for a certain polynomial p in m
real variables, or, more generally, as p1(t) 6= 0 or p2(t) 6= 0 or . . . , for
finitely or countably many polynomials p1, p2, . . ., can be included in a
general position assumption.

For example, let X be an n-point set in R
d, and let us consider the

condition “no d+1 points of X lie in a common hyperplane.” In other
words, no d+1 points should be affinely dependent. As we know, the
affine dependence of d+1 points means that a suitable d × d determi-
nant equals 0. This determinant is a polynomial (of degree d) in the
coordinates of these d+1 points. Introducing one polynomial for every
(d+1)-tuple of the points, we obtain

(

n
d+1

)

polynomials such that at least
one of them is 0 for any configuration X with d+1 points in a common
hyperplane. Other usual conditions for general position can be expressed
similarly.
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In many proofs, assuming general position simplifies matters consid-
erably. But what do we do with configurations X0 that are not in gen-
eral position? We have to argue, somehow, that if the statement being
proved is valid for configurations X arbitrarily close to our X0, then it
must be valid for X0 itself, too. Such proofs, usually called perturbation
arguments, are often rather simple, and almost always somewhat boring.
But sometimes they can be tricky, and one should not underestimate
them, no matter how tempting this may be. A nontrivial example will
be demonstrated in Section 5.5 (Lemma 5.5.4).

1.2 Convex Sets, Convex Combinations, Separation

Intuitively, a set is convex if its surface has no “dips”:

x y

not allowed in a convex set

1.2.1 Definition (Convex set). A set C ⊆ R
d is convex if for every

two points x, y ∈ C the whole segment xy is also contained in C. In
other words, for every t ∈ [0, 1], the point tx+ (1− t)y belongs to C.

The intersection of an arbitrary family of convex sets is obviously
convex. So we can define the convex hull of a set X ⊆ R

d, denoted by
conv(X), as the intersection of all convex sets in R

d containing X . Here
is a planar example with a finite X :

X conv(X)

An alternative description of the convex hull can be given using con-
vex combinations.
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1.2.2 Claim. A point x belongs to conv(X) if and only if there exist
points x1, x2, . . . xn ∈ X and nonnegative real numbers t1, t2, . . . , tn with
∑n

i=1 ti = 1 such that x =
∑n

i=1 tixi.

The expression
∑n

i=1 tixi as in the claim is called a convex combination
of the points x1, x2, . . . , xn. (Compare this with the definitions of linear
and affine combinations.)

Sketch of proof. Each convex combination of points of X must lie in
conv(X): For n = 2 this is by definition, and for larger n by induction.
Conversely, the set of all convex combinations obviously contains X and
it is convex. 2

In R
d, it is sufficient to consider convex combinations involving at

most d+1 points:

1.2.3 Theorem (Carathéodory’s theorem). Let X ⊆ R
d. Then

each point of conv(X) is a convex combination of at most d+1 points of
X .

For example, in the plane, conv(X) is the union of all triangles with
vertices at points of X . The proof of the theorem is left as an exercise.

A basic result about convex sets is the separability of disjoint convex
sets by a hyperplane.

1.2.4 Theorem (Separation theorem). Let C,D ⊆ R
d be convex

sets with C∩D = ∅. Then there exists a hyperplane h such that C lies in
one of the closed half-spaces determined by h, and D lies in the opposite
closed half-space. In other words, there exist a unit vector a ∈ R

d and
a number b ∈ R such that for all x ∈ C we have 〈a, x〉 ≥ b, and for all
x ∈ D we have 〈a, x〉 ≤ b.

If C and D are closed and at least one of them is bounded, they can
be separated strictly; in such a way that C ∩ h = D ∩ h = ∅.

In particular, a closed convex set can be strictly separated from a
point. This implies that the convex hull of a closed set X equals the
intersection of all closed half-spaces containing X .
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Sketch of proof. First assume that C and D are compact (i.e., closed
and bounded). Then the Cartesian product C × D is a compact space,
too, and the distance function (x, y) 7→ ‖x − y‖ attains its minimum
on C × D. That is, there exist points p ∈ C and q ∈ D such that the
distance of C and D equals the distance of p and q.

The desired separating hyperplane h can be taken as the one perpen-
dicular to the segment pq and passing through its midpoint:

C

D

p

q

h

It is easy to check that h indeed avoids both C and D.
If D is compact and C closed, we can intersect C with a large ball

and get a compact set C ′. If the ball is sufficiently large, then C and C ′

have the same distance to D. So the distance of C and D is attained at
some p ∈ C ′ and q ∈ D, and we can use the previous argument.

For arbitrary disjoint convex sets C and D the proof takes more
work. First we simplify the situation by observing that the hyperplane
separation of C and D is equivalent to a hyperplane separation of the
convex set C − D = {x − y: x ∈ C, y ∈ D} from the point 0 (we leave
the equivalence as an easy exercise; we could have used this trick in the
first part of the proof as well). Hence it suffices to consider the case with
D = {0} and C an arbitrary convex set not containing 0.

If 0 6∈ C, where C denotes the closure of C, then we are done by the
first part of the proof, so we assume 0 ∈ C. We claim that 0 must be
a boundary point of C. The proof of this proceeds by contradiction:If
0 is not on the boundary, then there is an open ball B around 0 with
B ⊆ C. By scaling the coordinate system suitably, we may assume that
B contains the points p1, p2, . . . , pd+1,where pi = ei (the ith standard



10 Chapter 1: Convexity

unit vector) for i = 1, 2, . . . , d and pd+1 = −(e1+ e2+ · · ·+ ed). It is very
intuitive, and a simple calculation confirms it, that conv{p1, . . . , pd+1}
contains a small neighborhood of 0. Since B ⊆ C, for every ε > 0 there
is a point p′i ∈ C lying at distance at most ε from pi, i = 1, . . . , d +
1, and it is again routine to check that if ε > 0 is sufficiently small,
conv{p′1, . . . , p′d+1} ⊆ C contains 0. But this is a contradiction since we
assumed 0 6∈ C. The claim is verified.

We now know that 0 lies on the boundary of C, and hence in the
closure of the complement of C. We can thus choose a sequence {qn}∞n=1

of points in R
d \ C tending to 0.Each qn lies outside the closed convex

set C, and thus it can be separated from it (strictly) by a hyperplane
hn = {x ∈ R

d: 〈an, x〉 = bn}, where an is a unit vector and bn ∈ R. The
sequence (bn)

∞
n=1 is bounded (this also needs a small argument), and by

compactness, the sequence of (d+1)-component vectors (an, bn) ∈ R
d+1

has a cluster point (a, b). One can verify, by contradiction, that the
hyperplane h = {x ∈ R

d: 〈a, x〉 = b} separates the point 0 from C (non-
strictly). 2

The importance of the separation theorem is documented by its pres-
ence in several branches of mathematics in various disguises. Its home
territory is probably functional analysis, where it is formulated and proved
for infinite-dimensional spaces; essentially it is the so-called Hahn–Banach
theorem. The usual functional-analytic proof is different from the one
we gave, and in a way it is more elegant and conceptual. The proof
sketched above uses more special properties of Rd, but it is quite short
and intuitive in the case of compact C and D.

Connection to linear programming. A basic result in the theory
of linear programming is the Farkas lemma. It is a special case of the
duality of linear programming as well as the key step in its proof.

1.2.5 Lemma (Farkas lemma, one of many versions). For every
d× n real matrix A, exactly one of the following cases occurs:

(i) The system of linear equations Ax = 0 has a nontrivial nonnegative
solution x ∈ R

n (all components of x are nonnegative and at least
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one of them is strictly positive).

(ii) There exists a y ∈ R
d such that yTA is a vector with all entries

strictly negative. Thus, if we multiply the jth equation in the
system Ax = 0 by yj and add these equations together, we obtain
an equation that obviously has no nontrivial nonnegative solution,
since all the coefficients on the left-hand sides are strictly negative,
while the right-hand side is 0.

Proof. Let us see why this is yet another version of the separation
theorem. Let V ⊂ R

d be the set of n points given by the column vectors
of the matrix A. We distinguish two cases: Either 0 ∈ conv(V ) or
0 6∈ conv(V ).

In the former case, we know that 0 is a convex combination of the
points of V , and the coefficients of this convex combination determine a
nontrivial nonnegative solution to Ax = 0.

In the latter case, there exists a hyperplane strictly separating V from
0, i.e., a unit vector y ∈ R

d such that 〈y, v〉 < 〈y, 0〉 = 0 for each v ∈ V .
This is just the y from the second alternative in the Farkas lemma. 2

1.3 Radon’s Lemma and Helly’s Theorem

Carathéodory’s theorem from the previous section, together with Radon’s
lemma and Helly’s theorem presented here, are three basic properties of
convexity in R

d involving the dimension. We begin with Radon’s lemma.

1.3.1 Theorem (Radon’s lemma). Let A be a set of d+2 points in
R

d. Then there exist two disjoint subsets A1, A2 ⊂ A such that

conv(A1) ∩ conv(A2) 6= ∅.

A point x ∈ conv(A1) ∩ conv(A2), where A1 and A2 are as in the
theorem, is called a Radon point of A, and the pair (A1, A2) is called a
Radon partition of A (it is easily seen that we can require A1 ∪A2 = A).

Here are two possible cases in the plane:
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Proof. Let A = {a1, a2, . . . , ad+2}. These d+2 points are necessarily
affinely dependent. That is, there exist real numbers α1, . . . , αd+2, not
all of them 0, such that

∑d+2
i=1 αi = 0 and

∑d+2
i=1 αiai = 0.

Set P = {i: αi > 0} and N = {i: αi < 0}. Both P and N are
nonempty. We claim that P and N determine the desired subsets. Let
us put A1 = {ai: i ∈ P} and A2 = {ai: i ∈ N}. We are going to exhibit
a point x that is contained in the convex hulls of both these sets.

Put S =
∑

i∈P αi; we also have S = −∑

i∈N αi. Then we define

x =
∑

i∈P

αi

S
ai . (1.1)

Since
∑d+2

i=1 αiai = 0 =
∑

i∈P αiai +
∑

i∈N αiai, we also have

x =
∑

i∈N

−αi

S
ai . (1.2)

The coefficients of the ai in (1.1) are nonnegative and sum to 1, so x is
a convex combination of points of A1. Similarly (1.2) expresses x as a
convex combination of points of A2. 2

Helly’s theorem is one of the most famous results of a combinatorial
nature about convex sets.

1.3.2 Theorem (Helly’s theorem). Let C1, C2, . . . , Cn be convex sets
in R

d, n ≥ d+1. Suppose that the intersection of every d+1 of these sets
is nonempty. Then the intersection of all the Ci is nonempty.

The first nontrivial case states that if every 3 among 4 convex sets in
the plane intersect, then there is a point common to all 4 sets. This can
be proved by an elementary geometric argument, perhaps distinguishing
a few cases, and the reader may want to try to find a proof before reading
further.



1.3 Radon’s Lemma and Helly’s Theorem 13

In a contrapositive form, Helly’s theorem guarantees that whenever
C1, C2, . . . , Cn are convex sets with

⋂n
i=1Ci = ∅, then this is witnessed

by some at most d+1 sets with empty intersection among the Ci. In this
way, many proofs are greatly simplified, since in planar problems, say,
one can deal with 3 convex sets instead of an arbitrary number.

It is very tempting and quite usual to formulate Helly’s theorem as
follows: “If every d+1 among n convex sets in R

d intersect, then all the
sets intersect.” But, strictly speaking, this is false, for a trivial reason:
For d ≥ 2, the assumption as stated here is met by n = 2 disjoint convex
sets.

Proof of Helly’s theorem. (Using Radon’s lemma.) For a fixed d, we
proceed by induction on n. The case n = d+1 is clear, so we suppose that
n ≥ d+2 and that the statement of Helly’s theorem holds for smaller n.
Actually, n = d+2 is the crucial case; the result for larger n follows at
once by a simple induction.

Consider sets C1, C2, . . . , Cn satisfying the assumptions. If we leave
out any one of these sets, the remaining sets have a nonempty intersection
by the inductive assumption. Let us fix a point ai ∈

⋂

j 6=iCj and consider
the points a1, a2, . . . , ad+2. By Radon’s lemma, there exist disjoint index
sets I1, I2 ⊂ {1, 2, . . . , d+2} such that

conv({ai: i ∈ I1}) ∩ conv({ai: i ∈ I2}) 6= ∅.

We pick a point x in this intersection. The following picture illustrates
the case d = 2 and n = 4:

C2

C1

C3 C4

a4 a3

a2

a1

x

We claim that x lies in the intersection of all the Ci. Consider some
i ∈ {1, 2, . . . , n}; then i 6∈ I1 or i 6∈ I2. In the former case, each aj
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with j ∈ I1 lies in Ci, and so x ∈ conv({aj: j ∈ I1}) ⊆ Ci. For i 6∈ I2
we similarly conclude that x ∈ conv({aj: j ∈ I2}) ⊆ Ci. Therefore
x ∈ ⋂n

i=1Ci. 2

An infinite version of Helly’s theorem. If we have an infinite
collection of convex sets in R

d such that any d+1 of them have a common
point, the entire collection still need not have a common point. Two
examples in R

1 are the families of intervals {(0, 1/n): n = 1, 2, . . .} and
{[n,∞): n = 1, 2, . . .}. The sets in the first example are not closed, and
the second example uses unbounded sets. For compact (i.e., closed and
bounded) sets, the theorem holds:

1.3.3 Theorem (Infinite version of Helly’s theorem). Let C be an
arbitrary infinite family of compact convex sets in R

d such that any d+1
of the sets have a nonempty intersection. Then all the sets of C have a
nonempty intersection.

Proof. By Helly’s theorem, any finite subfamily of C has a nonempty
intersection. By a basic property of compactness, if we have an arbi-
trary family of compact sets such that each of its finite subfamilies has a
nonempty intersection, then the entire family has a nonempty intersec-
tion. 2

1.4 Centerpoint and Ham Sandwich

We prove an interesting result as an application of Helly’s theorem.

1.4.1 Definition (Centerpoint). Let X be an n-point set in R
d.

A point x ∈ R
d is called a centerpoint of X if each closed half-space

containing x contains at least n
d+1

points of X .

Let us stress that one set may generally have many centerpoints, and
a centerpoint need not belong to X .
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The notion of centerpoint can be viewed as a generalization of the
median of one-dimensional data. Suppose that x1, . . . , xn ∈ R are results
of measurements of an unknown real parameter x. How do we estimate
x from the xi? We can use the arithmetic mean, but if one of the mea-
surements is completely wrong (say, 100 times larger than the others),
we may get quite a bad estimate. A more “robust” estimate is a median,
i.e., a point x such that at least n

2
of the xi lie in the interval (−∞, x]

and at least n
2
of them lie in [x,∞). The centerpoint can be regarded as

a generalization of the median for higher-dimensional data.

In the definition of centerpoint we could replace the fraction 1
d+1

by

some other parameter α ∈ (0, 1). For α > 1
d+1

, such an “α-centerpoint”
need not always exist: Take d+1 points in general position for X . With
α = 1

d+1
as in the definition above, a centerpoint always exists, as we

prove next.

Centerpoints are important, for example, in some algorithms of divide-
and-conquer type, where they help divide the considered problem into
smaller subproblems. Since no really efficient algorithms are known
for finding “exact” centerpoints, the algorithms often use α-centerpoints
with a suitable α < 1

d+1
, which are easier to find.

1.4.2 Theorem (Centerpoint theorem). Each finite point set in R
d

has at least one centerpoint.

Proof. First we note an equivalent definition of a centerpoint: x is a
centerpoint of X if and only if it lies in each open half-space γ such that
|X ∩ γ| > d

d+1
n.

We would like to apply Helly’s theorem to conclude that all these
open half-spaces intersect. But we cannot proceed directly, since we have
infinitely many half-spaces and they are open and unbounded. Instead
of such an open half-space γ, we thus consider the compact convex set
conv(X ∩ γ) ⊂ γ.
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γ

conv(X ∩ γ)

Letting γ run through all open half-spaces γ with |X∩γ| > d
d+1

n, we ob-
tain a family C of compact convex sets. Each of them contains more than
d

d+1
n points of X , and so the intersection of any d+1 of them contains at

least one point of X . The family C consists of finitely many distinct sets
(since X has finitely many distinct subsets), and so

⋂ C 6= ∅ by Helly’s
theorem. Each point in this intersection is a centerpoint. 2

In the definition of a centerpoint we can regard the finite set X as
defining a distribution of mass in R

d. The centerpoint theorem asserts
that for some point x, any half-space containing x encloses at least 1

d+1

of the total mass. It is not difficult to show that this remains valid for
continuous mass distributions, or even for arbitrary Borel probability
measures on R

d.

Ham-sandwich theorem and its relatives. Here is another impor-
tant result, not much related to convexity but with a flavor resembling
the centerpoint theorem.

1.4.3 Theorem (Ham-sandwich theorem). Every d finite sets in R
d

can be simultaneously bisected by a hyperplane. A hyperplane h bisects
a finite set A if each of the open half-spaces defined by h contains at
most ⌊|A|/2⌋ points of A.

This theorem is usually proved via continuous mass distributions us-
ing a tool from algebraic topology: the Borsuk–Ulam theorem. Here we
omit a proof.

Note that if Ai has an odd number of points, then every h bisecting
Ai passes through a point of Ai. Thus if A1, . . . , Ad all have odd sizes and
their union is in general position, then every hyperplane simultaneously
bisecting them is determined by d points, one of each Ai. In particular,
there are only finitely many such hyperplanes.
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Again, an analogous ham-sandwich theorem holds for arbitrary d
Borel probability measures in R

d.

Center transversal theorem. There can be beautiful new things to
discover even in well-studied areas of mathematics. A good example is
the following recent result, which “interpolates” between the centerpoint
theorem and the ham-sandwich theorem.

1.4.4 Theorem (Center transversal theorem). Let 1 ≤ k ≤ d
and let A1, A2, . . . , Ak be finite point sets in R

d. Then there exists a
(k−1)-flat f such that for every hyperplane h containing f , both the
closed half-spaces defined by h contain at least 1

d−k+2
|Ai| points of Ai,

i = 1, 2, . . . , k.

The ham-sandwich theorem is obtained for k = d and the centerpoint
theorem for k = 1. The proof, which we again have to omit, is based
on a result of algebraic topology, too, but it uses a considerably more
advanced machinery than the ham-sandwich theorem.



2

Lattices and Minkowski’s Theorem

This chapter is a quick excursion into the geometry of numbers, a field
where number-theoretic results are proved by geometric arguments, often
using properties of convex bodies in R

d. We formulate the simple but
beautiful theorem of Minkowski on the existence of a nonzero lattice
point in every symmetric convex body of sufficiently large volume. We
derive several consequences, concluding with a geometric proof of the
famous theorem of Lagrange claiming that every natural number can be
written as the sum of at most 4 squares.

2.1 Minkowski’s Theorem

In this section we consider the integer lattice Z
d, and so a lattice point

is a point in R
d with integer coordinates. The following theorem can be

used in many interesting situations to establish the existence of lattice
points with certain properties.

2.1.1 Theorem (Minkowski’s theorem). Let C ⊆ R
d be symmetric

(around the origin, i.e., C = −C), convex, bounded, and suppose that
vol(C) > 2d. Then C contains at least one lattice point different from 0.

Proof. We put C ′ = 1
2
C = {1

2
x: x ∈ C}.



2.1 Minkowski’s Theorem 19

Claim: There exists a nonzero integer vector v ∈ Z
d \ {0} such that

C ′ ∩ (C ′ + v) 6= ∅; i.e., C ′ and a translate of C ′ by an integer vector
intersect.

Proof. By contradiction; suppose the claim is false. Let R
be a large integer number. Consider the family C of translates
of C ′ by the integer vectors in the cube [−R,R]d: C = {C ′ +
v: v ∈ [−R,R]d ∩ Z

d}, as is indicated in the drawing (C is
painted in gray).

0

Each such translate is disjoint from C ′, and thus every two of
these translates are disjoint as well. They are all contained in
the enlarged cube K = [−R −D,R +D]d, where D denotes
the diameter of C ′. Hence

vol(K) = (2R + 2D)d ≥ |C| vol(C ′) = (2R + 1)d vol(C ′),

and

vol(C ′) ≤
(

1 +
2D − 1

2R + 1

)d

.

The expression on the right-hand side is arbitrarily close to
1 for sufficiently large R. On the other hand, vol(C ′) =
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2−d vol(C) > 1 is a fixed number exceeding 1 by a certain
amount independent of R, a contradiction. The claim thus
holds. 2

Now let us fix a v ∈ Z
d as in the claim and let us choose a point

x ∈ C ′ ∩ (C ′ + v). Then we have x− v ∈ C ′, and since C ′ is symmetric,
we obtain v − x ∈ C ′. Since C ′ is convex, the midpoint of the segment
x(v − x) lies in C ′ too, and so we have 1

2
x + 1

2
(v − x) = 1

2
v ∈ C ′. This

means that v ∈ C, which proves Minkowski’s theorem. 2

2.1.2 Example (About a regular forest). Let K be a circle of di-
ameter 26 (meters, say) centered at the origin. Trees of diameter 0.16
grow at each lattice point within K except for the origin, which is where
you are standing. Prove that you cannot see outside this miniforest.

Proof. Suppose than one could see outside along some line ℓ passing
through the origin. This means that the strip S of width 0.16 with ℓ as
the middle line contains no lattice point in K except for the origin. In
other words, the symmetric convex set C = K ∩ S contains no lattice
points but the origin. But as is easy to calculate, vol(C) > 4, which
contradicts Minkowski’s theorem. 2
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2.1.3 Proposition (Approximating an irrational number by a
fraction). Let α ∈ (0, 1) be a real number and N a natural num-
ber. Then there exists a pair of natural numbers m,n such that n ≤ N
and

∣

∣

∣
α− m

n

∣

∣

∣
<

1

nN
.

This proposition implies that there are infinitely many pairsm,n such
that |α− m

n
| < 1/n2. This is a basic and well-known result in elementary

number theory. It can also be proved using the pigeonhole principle.

Proof of Proposition 2.1.3. Consider the set

C =
{

(x, y) ∈ R
2: −N − 1

2
≤ x ≤ N + 1

2
, |αx− y| < 1

N

}

.

y = αx

N + 1

2

1

N

This is a symmetric convex set of area (2N+1) 2
N

> 4, and therefore it
contains some nonzero integer lattice point (n,m). By symmetry, we
may assume n > 0. The definition of C gives n ≤ N and |αn−m| < 1

N
.

In other words, |α− m
n
| < 1

nN
. 2

2.2 General Lattices

Let z1, z2, . . . , zd be a d-tuple of linearly independent vectors in R
d. We

define the lattice with basis {z1, z2, . . . , zd} as the set of all linear combi-
nations of the zi with integer coefficients; that is,

Λ = Λ(z1, z2, . . . , zd) = {i1z1 + i2z2 + · · ·+ idzd: (i1, i2, . . . , id) ∈ Z
d}.
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Let us remark that this lattice has in general many different bases. For
instance, the sets {(0, 1), (1, 0)} and {(1, 0), (3, 1)} are both bases of the
“standard” lattice Z

2.
Let us form a d× d matrix Z with the vectors z1, . . . , zd as columns.

We define the determinant of the lattice Λ = Λ(z1, z2, . . . , zd) as det Λ =
| detZ|. Geometrically, det Λ is the volume of the parallelepiped {α1z1+
α2z2 + · · ·+ αdzd: α1, . . . , αd ∈ [0, 1]}:

z1

z2

(the proof is left as an exercise). The number det Λ is indeed a property
of the lattice Λ (as a point set) and it does not depend on the choice of
the basis of Λ (exercise). It is not difficult to show that if Z is the matrix
of some basis of Λ, then the matrix of every basis of Λ has the form ZU ,
where U is an integer matrix with determinant ±1.

2.2.1 Theorem (Minkowski’s theorem for general lattices). Let
Λ be a lattice in R

d, and let C ⊆ R
d be a symmetric convex set with

vol(C) > 2d det Λ. Then C contains a point of Λ different from 0.

Proof. Let {z1, . . . , zd} be a basis of Λ. We define a linear mapping
f :Rd → R

d by f(x1, x2, . . . , xd) = x1z1 + x2z2 + · · ·+ xdzd. Then f is a
bijection and Λ = f(Zd). For any convex set X , we have vol(f(X)) =
det(Λ) vol(X). (Sketch of proof: This holds if X is a cube, and a convex
set can be approximated by a disjoint union of sufficiently small cubes
with arbitrary precision.) Let us put C ′ = f−1(C). This is a symmetric
convex set with vol(C ′) = vol(C)/ detΛ > 2d. Minkowski’s theorem
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provides a nonzero vector v ∈ C ′ ∩ Z
d, and f(v) is the desired point as

in the theorem. 2

A seemingly more general definition of a lattice. What if we
consider integer linear combinations of more than d vectors in R

d? Some
caution is necessary: If we take d = 1 and the vectors v1 = (1), v2 = (

√
2),

then the integer linear combinations i1v1 + i2v2 are dense in the real line
(by Proposition 2.1.3), and such a set is not what we would like to call a
lattice.

In order to exclude such pathology, we define a discrete subgroup of
R

d as a set Λ ⊂ R
d such that whenever x, y ∈ Λ, then also x − y ∈ Λ,

and such that the distance of any two distinct points of Λ is at least δ,
for some fixed positive real number δ > 0.

It can be shown, for instance, that if v1, v2, . . . , vn ∈ R
d are vec-

tors with rational coordinates, then the set Λ of all their integer linear
combinations is a discrete subgroup of Rd (exercise). As the following
theorem shows, any discrete subgroup of Rd whose linear span is all of
R

d is a lattice in the sense of the definition given at the beginning of this
section.

2.2.2 Theorem (Lattice basis theorem). Let Λ ⊂ R
d be a discrete

subgroup of Rd whose linear span is R
d. Then Λ has a basis; that is,

there exist d linearly independent vectors z1, z2, . . . , zd ∈ R
d such that

Λ = Λ(z1, z2, . . . , zd).

Proof. We proceed by induction. For some i, 1 ≤ i ≤ d+1, suppose
that linearly independent vectors z1, z2, . . . , zi−1 ∈ Λ with the following
property have already been constructed. If Fi−1 denotes the (i−1)-di-
mensional subspace spanned by z1, . . . , zi−1, then all points of Λ lying in
Fi−1 can be written as integer linear combinations of z1, . . . , zi−1. For
i = d+1, this gives the statement of the theorem.

So consider an i ≤ d. Since Λ generates R
d, there exists a vector

w ∈ Λ not lying in the subspace Fi−1. Let P be the i-dimensional
parallelepiped determined by z1, z2, . . . , zi−1 and by w: P = {α1z1 +
α2z2 + · · ·+ αi−1zi−1 + αiw: α1, . . . , αi ∈ [0, 1]}. Among all the (finitely
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many) points of Λ lying in P but not in Fi−1, choose one nearest to Fi−1

and call it zi, as in the picture:

0

Fi−1

zi−1 zi

P

w

Note that if the points of Λ∩P are written in the form α1z1+α2z2+ · · ·+
αi−1zi−1 + αiw, then zi is one with the smallest positive αi. It remains
to show that z1, z2, . . . , zi have the required property.

So let v ∈ Λ be a point lying in Fi (the linear span of z1, z2, . . . , zi).
We have v =

∑i−1
j=1 βjzj + βiw for some real numbers β1, . . . , βi (since

z1, z2, . . . , zi−1 and w also span Fi). Further, let us write zi =
∑i−1

j=1 αjzj+

αiw, 0 < αi ≤ 1. We let q = ⌊βi/αi⌋ and v′ = v−qzi =
∑i−1

j=1 γjzj+γiw ∈
Λ, where 0 ≤ γi = βi − qαi < αi (the other γj could be expressed as well
but they don’t matter). If γi = 0, then v′ ∈ Λ ∩ Fi−1, and we are done
by the inductive hypothesis. If γi > 0, then v′′ = v′ −∑i−1

j=1 ⌊γj⌋zj is a
lattice point in P that is nearer to Fi−1 than zi, since the coefficient of
w is γi < αi. This contradiction finishes the induction step. 2

Therefore, a lattice can also be defined as a full-dimensional discrete
subgroup of Rd.

2.3 An Application in Number Theory

We prove one nontrivial result of elementary number theory. The proof
via Minkowski’s theorem is one of several possible proofs. Another proof
uses the pigeonhole principle in a clever way.



2.3 An Application in Number Theory 25

2.3.1 Theorem (Two-square theorem). Each prime p ≡ 1 (mod 4)
can be written as a sum of two squares: p = a2 + b2, a, b ∈ Z.

Let F = GF (p) stand for the field of residue classes modulo p, and let
F ∗ = F \ {0}. An element a ∈ F ∗ is called a quadratic residue modulo p
if there exists an x ∈ F ∗ with x2 ≡ a (mod p). Otherwise, a is a quadratic
nonresidue.

2.3.2 Lemma. If p is a prime with p ≡ 1 (mod4) then −1 is a quadratic
residue modulo p.

Proof. The equation i2 = 1 has two solutions in the field F , namely i =
1 and i = −1. Hence for any i 6= ±1 there exists exactly one j 6= i with
ij = 1 (namely, j = i−1, the inverse element in F ), and all the elements of
F ∗ \ {−1, 1} can be divided into pairs such that the product of elements
in each pair is 1. Therefore, (p−1)! = 1 · 2 · · · (p−1) ≡ −1 (mod p).

For a contradiction, suppose that the equation i2 = −1 has no solution
in F . Then all the elements of F ∗ can be divided into pairs such that
the product of the elements in each pair is −1. The number of pairs is
(p−1)/2, which is an even number. Hence (p−1)! ≡ (−1)(p−1)/2 = 1, a
contradiction. 2

Proof of Theorem 2.3.1. By the lemma, we can choose a number
q such that q2 ≡ −1 (mod p). Consider the lattice Λ = Λ(z1, z2), where
z1 = (1, q) and z2 = (0, p). We have det Λ = p. We use Minkowski’s
theorem for general lattices (Theorem 2.2.1) for the disk C = {(x, y) ∈
R

2: x2+y2 < 2p}. The area of C is 2πp > 4p = 4det Λ, and so C contains
a point (a, b) ∈ Λ \ {0}. We have 0 < a2 + b2 < 2p. At the same time,
(a, b) = iz1 + jz2 for some i, j ∈ Z, which means that a = i, b = iq + jp.
We calculate a2 + b2 = i2 + (iq + jp)2 = i2 + i2q2 + 2iqjp + j2p2 ≡
i2(1 + q2) ≡ 0 (mod p). Therefore a2 + b2 = p. 2
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Convex Independent Subsets

Here we consider geometric Ramsey-type results about finite point sets
in the plane. Ramsey-type theorems are generally statements of the
following type: Every sufficiently large structure of a given type contains
a “regular” substructure of a prescribed size. In the forthcoming Erdős–
Szekeres theorem (Theorem 3.1.3), the “structure of a given type” is
simply a finite set of points in general position in R

2, and the “regular
substructure” is a set of points forming the vertex set of a convex polygon,
as is indicated in the picture:

A prototype of Ramsey-type results is Ramsey’s theorem itself: For
every choice of natural numbers p, r, n, there exists a natural number N
such that whenever X is an N -element set and c:

(

X
p

)

→ {1, 2, . . . , r}
is an arbitrary coloring of the system of all p-element subsets of X by
r colors, then there is an n-element subset Y ⊆ X such that all the p-
tuples in

(

Y
p

)

have the same color. The most famous special case is with
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p = r = 2, where
(

X
2

)

is interpreted as the edge set of the complete graph
KN on N vertices. Ramsey’s theorem asserts that if each of the edges of
KN is colored red or blue, we can always find a complete subgraph on n
vertices with all edges red or all edges blue.

Many of the geometric Ramsey-type theorems, including the Erdős–
Szekeres theorem, can be derived from Ramsey’s theorem. But the quan-
titative bound for the N in Ramsey’s theorem is very large, and conse-
quently, the size of the “regular” configurations guaranteed by proofs via
Ramsey’s theorem is very small. Other proofs tailored to the particular
problems and using more of their geometric structure often yield much
better quantitative results.

3.1 The Erdős–Szekeres Theorem

3.1.1 Definition (Convex independent set). We say that a set X ⊆
R

d is convex independent if for every x ∈ X , we have x 6∈ conv(X \ {x}).

The phrase “in convex position” is sometimes used synonymously
with “convex independent.” In the plane, a finite convex independent
set is the set of vertices of a convex polygon. We will discuss results
concerning the occurrence of convex independent subsets in sufficiently
large point sets. Here is a simple example of such a statement.

3.1.2 Proposition. Among any 5 points in the plane in general position
(no 3 collinear), we can find 4 points forming a convex independent set.

Proof. If the convex hull has 4 or 5 vertices, we are done. Otherwise,
we have a triangle with two points inside, and the two interior points
together with one of the sides of the triangle define a convex quadrilateral.

2

Next, we prove a general result.

3.1.3 Theorem (Erdős–Szekeres theorem). For every natural num-
ber k there exists a number n(k) such that any n(k)-point set X ⊂ R

2

in general position contains a k-point convex independent subset.
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First proof (using Ramsey’s theorem and Proposition 3.1.2).
Color a 4-tuple T ⊂ X red if its four points are convex independent and
blue otherwise. If n is sufficiently large, Ramsey’s theorem provides a
k-point subset Y ⊂ X such that all 4-tuples from Y have the same color.
But for k ≥ 5 this color cannot be blue, because any 5 points determine
at least one red 4-tuple. Consequently, Y is convex independent, since
every 4 of its points are (Carathéodory’s theorem). 2

Next, we give an inductive proof; it yields an almost tight bound for
n(k).

Second proof of the Erdős–Szekeres theorem. In this proof, by a
set in general position we mean a set with no 3 points on a common line
and no 2 points having the same x-coordinate. The latter can always be
achieved by rotating the coordinate system.

Let X be a finite point set in the plane in general position. We call
X a cup if X is convex independent and its convex hull is bounded from
above by a single edge (in other words, if the points of X lie on the graph
of a convex function).

Similarly, we define a cap, with a single edge bounding the convex hull
from below.

A k-cap is a cap with k points, and similarly for an ℓ-cup.
We define f(k, ℓ) as the smallest number N such than any N -point

set in general position contains a k-cup or an ℓ-cap. By induction on k
and ℓ, we prove the following formula for f(k, ℓ):

f(k, ℓ) ≤
(

k + ℓ− 4

k − 2

)

+ 1. (3.1)

Theorem 3.1.3 clearly follows from this, with n(k) ≤ f(k, k). For k ≤ 2
or ℓ ≤ 2 the formula holds. Thus, let k, ℓ ≥ 3, and consider a set P in
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general position with N = f(k−1, ℓ) + f(k, ℓ−1)−1 points. We prove
that it contains a k-cup or an ℓ-cap. This will establish the inequality
f(k, ℓ) ≤ f(k−1, ℓ) + f(k, ℓ−1)−1, and then (3.1) follows by induction;
we leave the simple manipulation of binomial coefficients to the reader.

Suppose that there is no ℓ-cap in X . Let E ⊆ X be the set of points
p ∈ X such that X contains a (k−1)-cup ending with p.

We have |E| ≥ N−f(k−1, ℓ)+1 = f(k, ℓ−1), because X \E contains
no (k−1)-cup and so |X \ E| < f(k−1, ℓ).

Either the set E contains a k-cup, and then we are done, or there is
an (ℓ−1)-cap. The first point p of such an (ℓ−1)-cap is, by the definition
of E, the last point of some (k−1)-cup in X , and in this situation, either
the cup or the cap can be extended by one point:

p

k − 1 ℓ− 1

p

k − 1 ℓ− 1

or

This finishes the inductive step. 2

A lower bound for sets without k-cups and ℓ-caps. Interestingly,
the bound for f(k, ℓ) proved above is tight, not only asymptotically but
exactly! This means, in particular, that there are n-point planar sets
in general position where any convex independent subset has at most
O(logn) points, which is somewhat surprising at first sight.

An example of a set Xk,ℓ of
(

k+ℓ−4
k−2

)

points in general position with no
k-cup and no ℓ-cap can be constructed, again by induction on k + ℓ. If
k ≤ 2 or ℓ ≤ 2, then Xk,ℓ can be taken as a one-point set.

Supposing both k ≥ 3 and ℓ ≥ 3, the set Xk,ℓ is obtained from the
sets L = Xk−1,ℓ and R = Xk,ℓ−1 according to the following picture:
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L = Xk−1,ℓ

R = Xk,ℓ−1

The set L is placed to the left of R in such a way that all lines determined
by pairs of points in L go below R and all lines determined by pairs of
points of R go above L.

Consider a cup C in the set Xk,ℓ thus constructed. If C ∩L = ∅, then
|C| ≤ k−1 by the assumption on R. If C ∩ L 6= ∅, then C has at most
1 point in R, and since no cup in L has more than k−2 points, we get
|C| ≤ k−1 as well. The argument for caps is symmetric.

We have |Xk,ℓ| = |Xk−1,ℓ|+ |Xk,ℓ−1|, and the formula for |Xk,ℓ| follows
by induction; the calculation is almost the same as in the previous proof.

2

Determining the exact value of n(k) in the Erdős–Szekeres theorem
is much more challenging. Here are the best known bounds:

2k−2 + 1 ≤ n(k) ≤
(

2k − 5

k − 2

)

+ 2.

The upper bound is a small improvement over the bound f(k, k) derived
above. The lower bound results from an inductive construction slightly
more complicated than that of Xk,ℓ.

3.2 Horton Sets

Let X be a set in R
d. A k-point set Y ⊆ X is called a k-hole in X if Y is

convex independent and conv(Y ) ∩X = Y . In the plane, Y determines
a convex k-gon with no points of X inside. Erdős raised the question
about the rather natural strengthening of the Erdős–Szekeres theorem:
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Is it true that for every k there exists an n(k) such that any n(k)-point
set in the plane in general position has a k-hole?

A construction due to Horton, whose streamlined version we present
below, shows that this is false for k ≥ 7: There are arbitrarily large sets
without a 7-hole. On the other hand, a positive result holds for k ≤ 6.
The result for k ≤ 5 is not hard and we prove it below. On the other
hand, for k = 6 the problem had been famous and open for many years,
and only recently it has been solved (independently by two authors).

3.2.1 Proposition (The existence of a 5-hole). Every sufficiently
large planar point set in general position contains a 5-hole.

Proof. By the Erdős–Szekeres theorem, we may assume that there
exists a 6-point convex independent subset of our set X . Consider a
6-point convex independent subset H ⊆ X with the smallest possible
|X ∩ conv(H)|. Let I = conv(H) ∩ (X \ H) be the points inside the
convex hull of H .

• If I = ∅, we have a 6-hole.

• If there is one point x in I, we consider a diagonal that partitions
the hexagon into two quadrilaterals:

x

The point x lies in one of these quadrilaterals, and the vertices of
the other quadrilateral together with x form a 5-hole.

• If |I| ≥ 2, we choose an edge xy of conv(I). Let γ be an open
half-plane bounded by the line xy and containing no points of I (it
is determined uniquely unless |I| = 2).
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If |γ ∩ H| ≥ 3, we get a 5-hole formed by x, y, and 3 points of
γ ∩H . For |γ ∩H| ≤ 2, we have one of the two cases indicated in
the following picture:

x

y

u

v

γ

y

x

u

γ

By replacing u and v by x and y in the left situation, or u by x
in the right situation, we obtain a 6-point convex independent set
having fewer points inside than H , which is a contradiction. 2

3.2.2 Theorem (Seven-hole theorem). There exist arbitrarily large
finite sets in the plane in general position without a 7-hole.

The sets constructed in the proof have other interesting properties as
well.

Definitions. Let X and Y be finite sets in the plane. We say that X
is high above Y (and that Y is deep below X) if the following hold:

(i) No line determined by two points of X ∪ Y is vertical.

(ii) Each line determined by two points of X lies above all the points
of Y .

(iii) Each line determined by two points of Y lies below all the points
of X .

For a set X = {x1, x2, . . . , xn}, with no two points having equal x-
coordinates and with notation chosen so that the x-coordinates of the xi

increase with i, we define the sets X0 = {x2, x4, . . .} (consisting of the
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points with even indices) and X1 = {x1, x3, . . .} (consisting of the points
with odd indices).

A finite set H ⊂ R
2 is a Horton set if |H| ≤ 1, or the following

conditions hold: |H| > 1, both H0 and H1 are Horton sets, and H1 lies
high above H0 or H0 lies high above H1.

3.2.3 Lemma. For every n ≥ 1, an n-point Horton set exists.

Proof. We note that one can produce a smaller Horton set from a larger
one by deleting points from the right. We construct H(k), a Horton set
of size 2k, by induction.

We define H(0) as the point (0, 0). Suppose that we can construct a
Horton set H(k) with 2k points whose x-coordinates are 0, 1, . . . , 2k−1.
The induction step goes as follows.

Let A = 2H(k) (i.e., H(k) expanded twice), and B = A+(1, hk), where
hk is a sufficiently large number. We set H(k+1) = A∪B. It is easily seen
that if hk is large enough, B lies high above A, and so H(k+1) is Horton
as well. The set H(3) looks like this:

2

Closedness from above and from below. A set X in R
2 is r-closed

from above if for any r-cup in X there exists a point in X lying above
the r-cup (i.e., above the bottom part of its convex hull).

r = 4
a point of
X here

Similarly, we define a set r-closed from below using r-caps.
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3.2.4 Lemma. Every Horton set is both 4-closed from above and 4-
closed from below.

Proof. We proceed by induction on the size of the Horton set. Let
H be a Horton set, and assume that H0 lies deep below H1 (the other
possible case is analogous). Let C ⊆ H be a 4-cup.

If C ⊆ H0 or C ⊆ H1, then a point closing C from above exists by
the inductive hypothesis. Thus, let C ∩H0 6= ∅ 6= C ∩H1.

The cup C may have at most 2 points in H1 (the upper part): If there
were 3 points, say a, b, c (in left-to-right order), then H0 lies below the
lines ab and bc, and so the remaining point of C, which was supposed to
lie in H0, cannot form a cup with {a, b, c}:

a
b

c

H1

H0

This means that C has at least 2 points, a and b, in the lower part
H0. Since the points of H0 and H1 alternate along the x-axis, there is a
point c ∈ H1 between a and b in the ordering by x-coordinates. This c is
above the segment ab, and so it closes the cup C from above. We argue
similarly for a 4-cap. 2

3.2.5 Proposition. No Horton set contains a 7-hole.

Proof. (Very similar to the previous one.) For contradiction, suppose
there is a 7-holeX in the considered Horton setH . IfX ⊆ H0 orX ⊆ H1,
we use induction. Otherwise, we select the part (H0 or H1) containing
the larger portion of X ; this has at least 4 points of X . If this part is,
say, H0, and it lies deep below H1, these 4 points must form a cup in H0,
for if some 3 of them were a cap, no point of H1 could complete them
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to a convex independent set. By Lemma 3.2.4, H0 (being a Horton set)
contains a point closing the 4-cup from above. Such a point must be
contained in the convex hull of the 7-hole X , a contradiction. 2



4

Incidence Problems

In this chapter we study a very natural problem of combinatorial geom-
etry: the maximum possible number of incidences between m points and
n lines in the plane. In addition to its mathematical appeal, this problem
and its relatives are significant in the analysis of several basic geomet-
ric algorithms. In the proofs we encounter number-theoretic arguments,
results about graph drawing, and the probabilistic method.

4.1 Formulation

Point–line incidences. Consider a set P of m points and a set L
of n lines in the plane. What is the maximum possible number of their
incidences, i.e., pairs (p, ℓ) such that p ∈ P , ℓ ∈ L, and p lies on ℓ? We
denote the number of incidences for specific P and L by I(P, L), and we
let I(m,n) be the maximum of I(P, L) over all choices of an m-element P
and an n-element L. For example, the following picture illustrates that
I(3, 3) ≥ 6,

and it is not hard to see that actually I(3, 3) = 6.
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A trivial upper bound is I(m,n) ≤ mn, but it it can never be attained
unless m = 1 or n = 1. In fact, if m has a similar order of magnitude
as n then I(m,n) is asymptotically much smaller than mn. The order of
magnitude is known exactly:

4.1.1 Theorem (Szemerédi–Trotter theorem). For all m,n ≥ 1,
we have I(m,n) = O(m2/3n2/3+m+n), and this bound is asymptotically
tight.

We will mostly consider only the most interesting case m = n. The
general case needs no new ideas but only a little more complicated cal-
culation.

Of course, the problem of point–line incidences can be generalized in
many ways. We can consider incidences between points and hyperplanes
in higher dimensions, or between points in the plane and some family of
curves, and so on. A particularly interesting case is that of points and
unit circles, which is closely related to counting unit distances.

Unit distances and distinct distances. Let U(n) denote the maxi-
mum possible number of pairs of points with unit distance in an n-point
set in the plane. For n ≤ 3 we have U(n) =

(

n
2

)

(all distances can be
1), but already for n = 4 at most 5 of the 6 distances can be 1; i.e.,
U(4) = 5:

We are interested in the asymptotic behavior of the function U(n) for
n → ∞.

This can also be reformulated as an incidence problem. Namely, con-
sider an n-point set P and draw a unit circle around each point of p,
thereby obtaining a set C of n unit circles. Each pair of points at
unit distance contributes two point–circle incidences, and hence U(n) ≤
1
2
I1circ(n, n), where I1circ(m,n) denotes the maximum possible number of

incidences between m points and n unit circles.
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Unlike the case of point–line incidences, the correct order of magni-
tude of U(n) is not known. An upper bound of O(n4/3) can be obtained
by modifying proofs of the Szemerédi–Trotter theorem. But the best
known lower bound is U(n) ≥ n1+c1/log logn, for some positive constant
c1; this is superlinear in n but grows more slowly than n1+ε for every
fixed ε > 0.

A related quantity is the minimum possible number of distinct dis-
tances determined by n points in the plane; formally,

g(n) = min
P⊂R2: |P |=n

|{dist(x, y): x, y ∈ P}|.

Clearly, g(n) ≥
(

n
2

)

/U(n), and so the bound U(n) = O(n4/3) mentioned

above gives g(n) = Ω(n2/3). This has been improved several times, and
the current best lower bound is approximately Ω(n0.863). The best known
upper bound is O(n/

√
logn).

4.2 Lower Bounds: Incidences and Unit Distances

4.2.1 Proposition (Many point–line incidences). We have I(n, n) =
Ω(n4/3), and so the upper bound for the maximum number of incidences
of n points and n lines in the plane in the Szemerédi–Trotter theorem is
asymptotically optimal.

It is not easy to come up with good constructions “by hand.” Small
cases do not seem to be helpful for discovering a general pattern. Sur-
prisingly, an asymptotically optimal construction is quite simple. The
appropriate lower bound for I(m,n) with n 6= m can be obtained simi-
larly.

Proof. For simplicity, we suppose that n = 4k3 for a natural num-
ber k. For the point set P , we choose the k × 4k2 grid; i.e., we set
P = {(i, j): i = 0, 1, 2, . . . , k−1, j = 0, 1, . . . , 4k2−1}. The set L consists
of all the lines with equations y = ax+ b, where a = 0, 1, . . . , 2k−1 and
b = 0, 1, . . . , 2k2−1. These are n lines, as it should be. For x ∈ [0, k),
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we have ax + b < ak + b < 2k2 + 2k2 = 4k2. Therefore, for each
i = 0, 1, . . . , k−1, each line of L contains a point of P with the x-
coordinate equal to i, and so I(P, L) ≥ k · |L| = Ω(n4/3). 2

Next, we consider unit distances, where the construction is equally
simple but the analysis uses considerable number-theoretic tools.

4.2.2 Theorem (Many unit distances). For all n ≥ 2, there exist
configurations of n points in the plane determining at least n1+c1/ log logn

unit distances, with a positive constant c1.

A configuration with the asymptotically largest known number of unit
distances is a

√
n × √

n regular grid with a suitably chosen step. Here
unit distances are related to the number of possible representations of an
integer as a sum of two squares. We begin with the following claim:

4.2.3 Lemma. Let p1 < p2 < · · · < pr be primes of the form 4k+1, and
put M = p1p2 · · · pr. Then M can be expressed as a sum of two squares
of integers in at least 2r ways.

Proof. As we know from Theorem 2.3.1, each pj can be written as a
sum of two squares: pj = a2j + b2j . In the sequel, we work with the ring
Z[i], the so-called Gaussian integers, consisting of all complex numbers
u+ iv, where u, v ∈ Z. We use the fact that each element of Z[i] can be
uniquely factored into primes. From algebra, we recall that a prime in
the ring Z[i] is an element γ ∈ Z[i] such that whenever γ = γ1γ2 with
γ1, γ2 ∈ Z[i], then |γ1| = 1 or |γ2| = 1. Both existence and uniqueness of
prime factorization follows from the fact that Z[i] is a Euclidean ring (see
an introductory course on algebra for an explanation of these notions).

Let us put αj = aj + i bj, and let ᾱj = aj − i bj bethe complex
conjugate of αj. We have αjᾱj = (aj + i bj)(aj − i bj) = a2j + b2j = pj. Let
us choose an arbitrary subset J ⊆ I = {1, 2, . . . , r} and define AJ+iBJ =
(

∏

j∈J αj

)(

∏

j∈I\J ᾱj

)

. Then AJ − iBJ =
(

∏

j∈J ᾱj

)(

∏

j∈I\J αj

)

, and

hence M = (AJ + iBJ)(AJ − iBJ) = A2
J +B2

J . This gives one expression
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of the number M as a sum of two squares. It remains to prove that for
two sets J 6= J ′, AJ + iBJ 6= AJ ′ + iBJ ′ . To this end, it suffices to show
that all the αj and ᾱj are primes in Z[i]. Then the numbers AJ + iBJ

and AJ ′ +iBJ ′ are distinct, since they have distinct prime factorizations.
(No αj or ᾱj can be obtained from another one by multiplying it by a
unit of the ring Z[i]: The units are only the elements 1,−1, i, and −i.)

So suppose that αj = γ1γ2, γ1, γ2 ∈ Z[i]. We have pj = αjᾱj =
γ1γ2γ̄1γ̄2 = |γ1|2|γ2|2. Now, |γ1|2 and |γ2|2 are both integers, and since pj
is a prime, we get that |γ1| = 1 or |γ2| = 1. 2

Next, we need to know that the primes of the form 4k+1 are suffi-
ciently dense. First we recall the well-known prime number theorem: If
π(n) denotes the number of primes not exceeding n, then

π(n) = (1 + o(1))
n

lnn
as n → ∞.

Proofs of this fact are quite complicated; on the other hand, it is not so
hard to prove weaker bounds cn/ logn < π(n) < Cn/ logn for suitable
positive constants c, C.

We consider primes in the arithmetic progression 1, 5, 9, . . . , 4k+1, . . . .
A famous theorem of Dirichlet asserts that every arithmetic progression
contains infinitely many primes unless this is impossible for a trivial rea-
son, namely, unless all the terms have a nontrivial common divisor. The
following theorem is still stronger:

4.2.4 Theorem. Let d and a be relatively prime natural numbers, and
let πd,a(n) be the number of primes of the form a + kd (k = 0, 1, 2, . . .)
not exceeding n. We have

πd,a(n) = (1 + o(1))
1

ϕ(d)
· n

lnn
,

where ϕ denotes the Euler function: ϕ(d)is the number of integers be-
tween 1 and d that are relatively prime to d.

For every d ≥ 2, there are ϕ(d) residue classes modulo d that can
possibly contain primes. The theorem shows that the primes are quite
uniformly distributed among these residue classes.
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The proof of the theorem is not simple, and we omit it, but it is
very nice, and we can only recommend to the reader to look it up in a
textbook on number theory.

Proof of the lower bound for unit distances (Theorem 4.2.2).
Let us suppose that n is a square. For the set P we choose the points
of the

√
n × √

n grid with step 1/
√
M , where M is the product of the

first r−1 primes of the form 4k+1, and r is chosen as the largest number
such that M ≤ n

4
.

It is easy to see that each point of the grid participates in at least as
many unit distances as there are representations of M as a sum of two
squares of nonnegative integers. Since one representation by a sum of two
squares of nonnegative integers corresponds to at most 4 representations
by a sum of two squares of arbitrary integers (the signs can be chosen in
4 ways), we have at least 2r−1/16 unit distances by Lemma 4.2.3.

By the choice of r, we have 4p1p2 · · ·pr−1 ≤ n < 4p1p2 · · ·pr, and
hence 2r ≤ n and pr > (n

4
)1/r. Further, we obtain, by Theorem 4.2.4,

r = π4,1(pr) ≥ (1
2
− o(1))pr/ log pr ≥

√
pr ≥ n1/3r for sufficientlylarge n,

and thus r3r ≥ n. Taking logarithms, we have 3r log r ≥ log n, and hence
r ≥ logn/(3 log r) ≥ logn/(3 log log n). The number of unit distances is
at least n 2r−4 ≥ n1+c1/ log logn, as Theorem 4.2.2 claims. Let us remark
that for sufficiently large n the constant c1 can be made as close to 1 as
desired. 2

4.3 Point–Line Incidences via Crossing Numbers

Here we present a very simple proof of the Szemerédi–Trotter theorem
based on a result concerning graph drawing. We need the notion of the
crossing number of a graph G; this is the minimum possible number of
edge crossings in a drawing of G. To make this rigorous, let us first recall
a formal definition of a drawing.

An arc is the image of a continuous injective map [0, 1] → R
2. A

drawing of a graph G is a mapping that assigns to each vertex of G a
point in the plane (distinct vertices being assigned distinct points) and
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to each edge of G an arc connecting the corresponding two (images of)
vertices and not incident to any other vertex. We do not insist that the
drawing be planar, so the arcs are allowed to cross. A crossing is a point
common to at least two arcs but distinct from all vertices.

In this section we will actually deal only with drawings where each
edge is represented by a straight segment.

Let G be a graph (or multigraph). The crossing number of a drawing
of G in the plane is the number of crossings in the considered drawing,
where a crossing incident to k ≥ 2 edges is counted

(

k
2

)

times. So a
drawing is planar if and only if its crossing number is 0. The crossing
number of the graph G is the smallest possible crossing number of a
drawing of G; we denote it by cr(G). For example, cr(K5) = 1:

As is well known, for n > 2, a planar graph with n vertices has at
most 3n−6 edges. This can be rephrased as follows: If the number of
edges is at least 3n−5 then cr(G) > 0. The following theorem can be
viewed as a generalization of this fact.

4.3.1 Theorem (Crossing number theorem). Let G = (V,E) be a
simple graph (no multiple edges). Then

cr(G) ≥ 1

64
· |E|3
|V |2 − |V |

(the constant 1
64

can be improved by a more careful calculation).

The lower bound in this theorem is asymptotically tight; i.e., there
exist graphs with n vertices, m edges, and crossing number O(m3/n2)
(exercise). The assumption that the graph is simple cannot be omitted.

For a proof of this theorem, we need a simple lemma:

4.3.2 Lemma. The crossing number of any simple graph G = (V,E) is
at least |E| − 3|V |.
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Proof. If |E| > 3|V | and some drawing of the graph had fewer than
|E| − 3|V | crossings, then we could delete one edge from each crossing
and obtain a planar graph with more than 3|V | edges. 2

Proof of Theorem 4.3.1. Consider some drawing of a graph G =
(V,E) with n vertices, m edges, and crossing number x. We may and will
assume that no two edges sharing a common vertex cross in the drawing.
If we have a straight-edge drawing, as will be the case in the proof of the
Szemerédi–Trotter theorem, then this is satisfied automatically, and for
curvilinear drawings we can eliminate crossings of neighboring edges by
modifying the drawing:

We may assumem ≥ 4n, for otherwise, the claimed bound is negative.
Let p ∈ (0, 1) be a parameter; later on we set it to a suitable value. We
choose a random subset V ′ ⊆ V by including each vertex v ∈ V into V ′

independently with probability p. Let G′ be the subgraph of G induced
by the subset V ′. Put n′ = |V ′|, m′ = |E(G′)|, and let x′ be the crossing
number of the graph G′ in the drawing “inherited” from the considered
drawing of G. The expectation of n′ is E[n′] = np. The probability that a
given edge appears in E(G′) is p2, and hence E[m′] = mp2, and similarly
we get E[x′] = xp4. At the same time, by Lemma 4.3.2 we always have
x′ ≥ m′ − 3n′, and so this relation holds for the expectations as well:
E[x′] ≥ E[m′]− 3E[n′].

So we have xp4 ≥ mp2 − 3np. Setting p = 4n
m

(which is at most 1,
since we assume m ≥ 4n), we calculate that

x ≥ 1

64

m3

n2
.

The crossing number theorem is proved. 2
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Proof of the Szemerédi–Trotter theorem (Theorem 4.1.1). We
consider a set P ofm points and a set L of n lines in the plane realizing the
maximum number of incidences I(m,n). We define a certain topological
graph G = (V,E), that is, a graph together with its drawing in the
plane. Each point p ∈ P becomes a vertex of G, and two points p, q ∈ P
are connected by an edge if they lie on a common line ℓ ∈ L next to
one another. So we have a drawing of G where the edges are straight
segments. This is illustrated below, with G drawn thick:

If a line ℓ ∈ L contains k ≥ 1 points of P , then it contributes k−1
edges to E, and hence I(m,n) = |E| + n. Since the edges are parts of
the n lines, at most

(

n
2

)

pairs may cross: cr(G) ≤
(

n
2

)

. On the other
hand, from the crossing number theorem we get cr(G) ≥ 1

64
· |E|3/m2 −

m. So 1
64

· |E|3/m2 − m ≤ cr(G) ≤
(

n
2

)

, and a calculation gives |E| =
O(n2/3m2/3 +m). This proves the Szemerédi–Trotter theorem. 2

The best known upper bound on the number of unit distances, U(n) =
O(n4/3), can be proved along similar lines (try it!).
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Convex Polytopes

Convex polytopes are convex hulls of finite point sets in R
d. They consti-

tute the most important class of convex sets with an enormous number
of applications and connections.

Three-dimensional convex polytopes, especially the regular ones, have
been fascinating people since the antiquity. Their investigation was one
of the main sources of the theory of planar graphs, and thanks to this
well-developed theory they are quite well understood. But convex poly-
topes in dimension 4 and higher are considerably more challenging, and
a surprisingly deep theory, mainly of algebraic nature, was developed in
attempts to understand their structure.

A strong motivation for the study of convex polytopes comes from
practically significant areas such as combinatorial optimization, linear
programming, and computational geometry. Let us look at a simple
example illustrating how polytopes can be associated with combinatorial
objects. The 3-dimensional polytope in the picture
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is called the permutahedron. Although it is 3-dimensional, it is most
naturally defined as a subset of R4, namely, the convex hull of the 24
vectors obtained by permuting the coordinates of the vector (1, 2, 3, 4)
in all possible ways. In the picture, the (visible) vertices are labeled
by the corresponding permutations. Similarly, the d-dimensional per-
mutahedron is the convex hull of the (d+1)! vectors in R

d+1 arising by
permuting the coordinates of (1, 2, . . . , d+1). One can observe that the
edges of the polytope connect exactly pairs of permutations differing by
a transposition of two adjacent numbers, and a closer examination re-
veals other connections between the structure of the permutahedron and
properties of permutations.

There are many other, more sophisticated, examples of convex poly-
topes assigned to combinatorial and geometric objects such as graphs,
partially ordered sets, classes of metric spaces, or triangulations of a
given point set. In many cases, such convex polytopes are a key tool
for proving hard theorems about the original objects or for obtaining
efficient algorithms.

5.1 Geometric Duality

First we discuss geometric duality, a simple technical tool indispensable
in the study of convex polytopes and handy in many other situations.
We begin with a simple motivating question.
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How can we visualize the set of all lines intersecting a convex pentagon
as in the picture?

a1

a2
a3

a4

a5

A suitable way is provided by line–point duality.

5.1.1 Definition (Duality transform). The (geometric) duality trans-
form is a mapping denoted by D0. To a point a ∈ R

d \ {0} it assigns the
hyperplane

D0(a) = {x ∈ R
d: 〈a, x〉 = 1},

and to a hyperplane h not passing through the origin, which can be
uniquely written in the form h = {x ∈ R

d: 〈a, x〉 = 1}, it assigns the
point D0(h) = a ∈ R

d \ {0}.

Here is the geometric meaning of the duality transform. If a is a point
at distance δ from 0, then D0(a) is the hyperplane perpendicular to the
line 0a and intersecting that line at distance 1

δ
from 0, in the direction

from 0 towards a.

0

a

δ1

δ

D0(a)

A nice interpretation of duality is obtained by working in R
d+1 and

identifying the “primal” R
d with the hyperplane π = {x ∈ R

d+1: xd+1 =
1} and the “dual” R

d with the hyperplane ρ = {x ∈ R
d+1: xd+1 = −1}.

The hyperplane dual to a point a ∈ π is produced as follows: We con-
struct the hyperplane in R

d+1 perpendicular to 0a and containing 0, and
we intersect it with ρ. Here is an illustration for d = 2:



48 Chapter 5: Convex Polytopes

0 ρ

π

a

D0(a)

In this way, the duality D0 can be naturally extended to k-flats in R
d,

whose duals are (d−k−1)-flats. Namely, given a k-flat f ⊂ π, we con-
sider the (k+1)-flat F through 0 and f , we construct the orthogonal
complement of F , and we intersect it with ρ, obtaining D0(f).

Let us consider the pentagon drawn above and place it so that the ori-
gin lies in the interior. Let vi = D0(ℓi), where ℓi is the line containing the
side aiai+1. Then the points dual to the lines intersecting the pentagon
a1a2 . . . a5 fill exactly the exterior of the convex pentagon v1v2 . . . v5:

0a1

a2
a3

a4

a5

ℓ1

v1 = D0(ℓ1)

v2

v3

v4

v5

This follows easily from the properties of duality listed below (of course,
there is nothing special about a pentagon here). Thus, the considered
set of lines can be nicely described in the dual plane. A similar passage
from lines to points or back is useful in many geometric or computational
problems.

Properties of the duality transform. Let p be a point of Rd distinct
from the origin and let h be a hyperplane in R

d not containing the origin.
Let h− stand for the closed half-space bounded by h and containing the
origin, while h+ denotes the other closed half-space bounded by h. That
is, if h = {x ∈ R

d: 〈a, x〉 = 1}, then h− = {x ∈ R
d: 〈a, x〉 ≤ 1}.
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5.1.2 Lemma (Duality preserves incidences).

(i) p ∈ h if and only if D0(h) ∈ D0(p).

(ii) p ∈ h− if and only if D0(h) ∈ D0(p)
−.

Proof. (i) Let h = {x ∈ R
d: 〈a, x〉 = 1}. Then p ∈ h means 〈a, p〉 = 1.

Now, D0(h) is the point a, and D0(p) is the hyperplane {y ∈ R
d: 〈y, p〉 =

1}, and hence D0(h) = a ∈ D0(p) also means just 〈a, p〉 = 1. Part (ii) is
proved similarly. 2

5.1.3 Definition (Dual set). For a set X ⊆ R
d, we define the set dual

to X , denoted by X∗, as follows:

X∗ = {y ∈ R
d: 〈x, y〉 ≤ 1 for all x ∈ X} .

Another common name used for the duality is polarity; the dual set
would then be called the polar set. Sometimes it is denoted by X◦.

Geometrically, X∗ is the intersection of all half-spaces of the form
D0(x)

− with x ∈ X . Or in other words, X∗ consists of the origin plus
all points y such that X ⊆ D0(y)

−. For example, if X is the pentagon
a1a2 . . . a5 drawn above, then X∗ is the pentagon v1v2 . . . v5.

For any set X , the set X∗ is obviously closed and convex and contains
the origin. Using the separation theorem (Theorem 1.2.4), it is easily
shown that for any set X ⊆ R

d, the set (X∗)∗ is the closure conv(X ∪
{0}). In particular, for a closed convex set containing the origin we have
(X∗)∗ = X (exercise).

For a hyperplane h, the dual set h∗ is different from the point D0(h).
For readers familiar with the duality of planar graphs, let us remark

that it is closely related to the geometric duality applied to convex poly-
topes in R

3. For example, the next drawing illustrates a planar graph
and its dual graph (dashed):
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Later we will see that these are graphs of the 3-dimensional cube and
of the regular octahedron, which are polytopes dual to each other in
the sense defined above. A similar relation holds for all 3-dimensional
polytopes and their graphs.

Other variants of duality. The duality transform D0 defined above
is just one of a class of geometric transforms with similar properties. For
some purposes, other such transforms (dualities) are more convenient. A
particularly important duality, denoted by D, corresponds to moving the
origin to the “minus infinity” of the xd-axis (the xd-axis is considered
vertical). A formal definition is as follows.

5.1.4 Definition (Another duality). A nonvertical hyperplane h
can be uniquely written in the form h = {x ∈ R

d: xd = a1x1 + · · · +
ad−1xd−1 − ad}. We set D(h) = (a1, . . . , ad−1, ad). Conversely, the point
a maps back to h.

The property (i) of Lemma 5.1.2 holds for this D, and an analogue
of (ii) is:

(ii′) A point p lies above a hyperplane h if and only if the point D(h)
lies above the hyperplane D(p).

5.2 H -Polytopes and V -Polytopes

A convex polytope in the plane is a convex polygon. Famous examples of
convex polytopes in R

3 are the Platonic solids: regular tetrahedron, cube,
regular octahedron, regular dodecahedron, and regular icosahedron. A
convex polytope in R

3 is a convex set bounded by finitely many convex
polygons. Such a set can be regarded as a convex hull of a finite point
set, or as an intersection of finitely many half-spaces. We thus define two
types of convex polytopes, based on these two views.

5.2.1 Definition (H-polytope and V -polytope). AnH-polyhedron
is an intersection of finitely many closed half-spaces in some R

d. An H-
polytope is a bounded H-polyhedron.
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A V -polytope is the convex hull of a finite point set in R
d.

A basic theorem about convex polytopes claims that from the math-
ematical point of view, H-polytopes and V -polytopes are equivalent.

5.2.2 Theorem. Each V -polytope is an H-polytope. Each H-polytope
is a V -polytope.

This is one of the theorems that may look “obvious” and whose proof
needs no particularly clever idea but does require some work. In the
present case, we do not intend to avoid it. Actually, we have quite a neat
proof in store, but we postpone it to the end of this section.

Although H-polytopes and V -polytopes are mathematically equiva-
lent, there is an enormous difference between them from the computa-
tional point of view. That is, it matters a lot whether a convex polytope
is given to us as a convex hull of a finite set or as an intersection of half-
spaces. For example, given a set of n points specifying a V -polytope, how
do we find its representation as an H-polytope? It is not hard to come
up with some algorithm, but the problem is to find an efficient algorithm
that would allow one to handle large real-world problems. This algorith-
mic question is not yet satisfactorily solved. Moreover, in some cases the
number of required half-spaces may be astronomically large compared to
the number n of points, as we will see later in this chapter.

As another illustration of the computational difference between V -po-
lytopes and H-polytopes, we consider the maximization of a given linear
function over a given polytope. For V -polytopes it is a trivial problem,
since it suffices to substitute all points of V into the given linear function
and select the maximum of the resulting values. But maximizing a linear
function over the intersection of a collection of half-spaces is the basic
problem of linear programming, and it is certainly nontrivial.

Terminology. The usual terminology does not distinguish V -poly-
topes and H-polytopes. A convex polytope means a point set in R

d that
is a V -polytope (and thus also an H-polytope). An arbitrary, possibly
unbounded, H-polyhedron is called a convex polyhedron. All polytopes
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and polyhedra considered in this chapter are convex, and so the adjective
“convex” is often omitted.

The dimension of a convex polyhedron is the dimension of its affine
hull. It is the smallest dimension of a Euclidean space containing a
congruent copy of P .

Basic examples. One of the easiest classes of polytopes is that of
cubes. The d-dimensional cube as a point set is the Cartesian product
[−1, 1]d.

d = 1 d = 2 d = 3

As a V -polytope, the d-dimensional cube is the convex hull of the set
{−1, 1}d (2d points), and as an H-polytope, it can be described by the
inequalities −1 ≤ xi ≤ 1, i = 1, 2, . . . , d, i.e., by 2d half-spaces. We note
that it is also the unit ball of the maximum norm ‖x‖∞ = maxi |xi|.

Another important example is the class of crosspolytopes (or gener-
alized octahedra). The d-dimensional crosspolytope is the convex hull
of the “coordinate cross,” i.e., conv{e1,−e1, e2,−e2, . . . , ed,−ed}, where
e1, . . . , ed are the vectors of the standard orthonormal basis.

d = 1 d = 2 d = 3

It is also the unit ball of the ℓ1-norm ‖x‖1 =
∑d

i=1 |xi| . As an H-poly-
tope, it can be expressed by the 2d half-spaces of the form 〈σ, x〉 ≤ 1,
where σ runs through all vectors in {−1, 1}d.

The polytopes with the smallest possible number of vertices (for a
given dimension) are called simplices.
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5.2.3 Definition (Simplex). A simplex is the convex hull of an affinely
independent point set in some R

d.

A d-dimensional simplex in R
d can also be represented as an inter-

section of d+1 half-spaces, as is not difficult to check.
A regular d-dimensional simplex is the convex hull of d+1 points with

all pairs of points having equal distances.

d = 1 d = 2 d = 3d = 0

Unlike cubes and crosspolytopes, d-dimensional regular simplices do not
have a very nice coordinate representation in R

d. The simplest and most
useful representation lives one dimension higher: The convex hull of the
d+1 vectors e1, . . . , ed+1 of the standard orthonormal basis in R

d+1 is a
d-dimensional regular simplex with side length

√
2.

(0, 1, 0)

(1, 0, 0)

(0, 0, 1)

Proof of Theorem 5.2.2 (equivalence of H-polytopes and V -
polytopes). We first show that any H-polytope is also a V -polytope.
We proceed by induction on d. The case d = 1 being trivial, we suppose
that d ≥ 2.

So let Γ be a finite collection of closed half-spaces in R
d such that

P =
⋂

Γ is nonempty and bounded. For each γ ∈ Γ, let Fγ = P ∩ ∂γ be
the intersection of P with the bounding hyperplane of γ. Each nonempty
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Fγ is an H-polytope of dimension at most d−1 (correct?), and so it is
the convex hull of a finite set Vγ ⊂ Fγ by the inductive hypothesis.

We claim that P = conv(V ), where V =
⋃

γ∈Γ Vγ . Let x ∈ P and let
ℓ be a line passing through x. The intersection ℓ ∩ P is a segment; let y
and z be its endpoints. There are α, β ∈ Γ such that y ∈ Fα and z ∈ Fβ

(if y were not on the boundary of any γ ∈ Γ, we could continue along ℓ
a little further within P ).

xP
ℓ

y

z

α

β

Fα

Fβ

We have y ∈ conv(Vα) and z ∈ conv(Vβ), and thus x ∈ conv(Vα ∪ Vβ) ⊆
conv(V ).

We have proved that any H-polytope is a V -polytope, and it remains
to show that a V -polytope can be expressed as the intersection of finitely
many half-spaces. This follows easily by duality (and implicitly uses the
separation theorem), and we leave this as an exercise. 2

5.3 Faces of a Convex Polytope

The surface of the 3-dimensional cube consists of 8 “corner” points called
vertices, 12 edges, and 6 squares called facets. According to the perhaps
more usual terminology in 3-dimensional geometry, the facets would be
called faces. But in the theory of convex polytopes, the word face has
a slightly different meaning, defined below. For the cube, not only the
squares but also the vertices and the edges are all called faces of the
cube.

5.3.1 Definition (Face). A face of a convex polytope P is defined as

• either P itself, or
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• a subset of P of the form P ∩ h, where h is a hyperplane such that
P is fully contained in one of the closed half-spaces determined by
h.

h

P

F

We observe that each face of P is a convex polytope. This is because
P is the intersection of finitely many half-spaces and h is the intersection
of two half-spaces, so the face is an H-polyhedron, and moreover, it is
bounded.

If P is a polytope of dimension d, then its faces have dimensions −1,
0, 1, . . ., d, where −1 is, by definition, the dimension of the empty set.
A face of dimension j is also called a j-face.

Names of faces. The 0-faces are called vertices, the 1-faces are called
edges, and the (d−1)-faces of a d-dimensional polytope are called facets.
The (d−2)-faces of a d-dimensional polytope are ridges; in the familiar
3-dimensional situation, edges= ridges. For example, the 3-dimensional
cube has 28 faces in total: the empty face, 8 vertices, 12 edges, 6 facets,
and the whole cube.

The following proposition shows that each V -polytope is the convex
hull of its vertices, and that the faces can be described combinatorially:
They are the convex hulls of certain subsets of vertices. This includes
some intuitive facts such as that each edge connects two vertices.

A helpful notion is that of an extremal point of a set: For a set
X ⊆ R

d, a point x ∈ X is extremal if x 6∈ conv(X \ {x}).

5.3.2 Proposition. Let P ⊂ R
d be a (bounded) convex polytope.

(i) (“Vertices are extremal”) The extremal points of P are exactly its
vertices, and P is the convex hull of its vertices.
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(ii) (“Face of a face is a face”) Let F be a face of P . The vertices of
F are exactly those vertices of P that lie in F . More generally, the
faces of F are exactly those faces of P that are contained in F .

The proof is not essential for our further considerations, and it is given
at the end of this section. below illustrates that things are not quite as
simple as it might perhaps seem). The proposition has an appropriate
analogue for polyhedra, but in order to avoid technicalities, we treat the
bounded case only.

Graphs of polytopes. Each 1-dimensional face, or edge, of a convex
polytope has exactly two vertices. We can thus define the graph G(P )
of a polytope P in the natural way: The vertices of the polytope are
vertices of the graph, and two vertices are connected by an edge in the
graph if they are vertices of the same edge of P . (The terms “vertices”
and “edges” for graphs actually come from the corresponding notions for
3-dimensional convex polytopes.) Here is an example of a 3-dimensional
polytope, the regular octahedron, with its graph:

For polytopes in R
3, the graph is always planar: Project the polytope

from its interior point onto a circumscribed sphere, and then make a “car-
tographic map” of this sphere, say by stereographic projection. Moreover,
it can be shown that the graph is vertex 3-connected. (A graphG is called
vertex k-connected if |V (G)| ≥ k+1 and deleting any at most k−1 ver-
tices leaves G connected.) Nicely enough, these properties characterize
graphs of convex 3-polytopes:

5.3.3 Theorem (Steinitz theorem). A finite graph is isomorphic to
the graph of a 3-dimensional convex polytope if and only if it is planar
and vertex 3-connected.
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We omit a proof of the considerably harder “if” part (exhibiting a
polytope for every vertex 3-connected planar graph); all known proofs
are quite complicated.

Graphs of higher-dimensional polytopes probably have no nice de-
scription comparable to the 3-dimensional case, and it is likely that the
problem of deciding whether a given graph is isomorphic to a graph of a
4-dimensional convex polytope is NP-hard. It is known that the graph of
every d-dimensional polytope is vertex d-connected (Balinski’s theorem),
but this is only a necessary condition.

Examples. A d-dimensional simplex has been defined as the convex
hull of a (d+1)-point affinely independent set V . It is easy to see that
each subset of V determines a face of the simplex. Thus, there are

(

d+1
k+1

)

faces of dimension k, k = −1, 0, . . . , d, and 2d+1 faces in total.
The d-dimensional crosspolytope has V = {e1,−e1, . . . , ed,−ed} as

the vertex set. A proper subset F ⊂ V determines a face if and only
if there is no i such that both ei ∈ F and −ei ∈ F (exercise). It fol-
lows that there are 3d+1 faces, including the empty one and the whole
crosspolytope.

The nonempty faces of the d-dimensional cube [−1, 1]d correspond
to vectors v ∈ {−1, 1, 0}d. The face corresponding to such v has the
vertex set {u ∈ {−1, 1}d: ui = vi for all i with vi 6= 0}. Geometrically,
the vector v is the center of gravity of its face.

The face lattice. Let F(P ) be the set of all faces of a (bounded)
convex polytope P (including the empty face ∅ of dimension −1). We
consider the partial ordering of F(P ) by inclusion.

5.3.4 Definition (Combinatorial equivalence). Two convex poly-
topes P and Q are called combinatorially equivalent if F(P ) and F(Q)
are isomorphic as partially ordered sets.

We are going to state some properties of the partially ordered set
F(P ) without proofs. These are not difficult and are omitted.

It turns out that F(P ) is a lattice (a partially ordered set satisfying
additional axioms). We recall that this means the following two condi-
tions:
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• Meets condition: For any two faces F,G ∈ F(P ), there exists a
face M ∈ F(P ), called the meet of F and G, that is contained in
both F and G and contains all other faces contained in both F and
G.

• Joins condition: For any two faces F,G ∈ F(P ), there exists a
face J ∈ F(P ), called the join of F and G, that contains both F
and G and is contained in all other faces containing both F and G.

The meet of two faces is their geometric intersection F ∩G.
For verifying the joins and meets conditions, it may be helpful to know

that for a finite partially ordered set possessing the minimum element
and the maximum element, the meets condition is equivalent to the joins
condition, and so it is enough to check only one of the conditions.

Here is the face lattice of a 3-dimensional pyramid:

∅

1 2 3 4 5

12 14 1523 25 4534 35

125 1452351234

P

345

1 2

3
4

5

P

The vertices are numbered 1–5, and the faces are labeled by the vertex
sets.

The face lattice is graded, meaning that every maximal chain has the
same length (the rank of a face F is dim(F )+1). Quite obviously, it is
atomic: Every face is the join of its vertices. A little less obviously, it
is coatomic; that is, every face is the meet (intersection) of the facets
containing it. An important consequence is that combinatorial type of a
polytope is determined by the vertex–facet incidences. More precisely, if
we know the dimension and all subsets of vertices that are vertex sets of
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facets (but without knowing the coordinates of the vertices, of course),
we can uniquely reconstruct the whole face lattice in a simple and purely
combinatorial way.

Face lattices of convex polytopes have several other nice properties,
but no full algebraic characterization is known, and the problem of de-
ciding whether a given lattice is a face lattice is algorithmically difficult
(even for 4-dimensional polytopes).

The face lattice can be a suitable representation of a convex polytope
in a computer. Each j-face is connected by pointers to its (j−1)-faces
and to the (j+1)-faces containing it. On the other hand, it is a somewhat
redundant representation: Recall that the vertex–facet incidences already
contain the full information, and for some applications, even less data
may be sufficient, say the graph of the polytope.

The dual polytope. Let P be a convex polytope containing the origin
in its interior. Then the dual set P ∗ is also a polytope; we have verified
this in the proof of Theorem 5.2.2.

5.3.5 Proposition. For each j = −1, 0, . . . , d, the j-faces of P are in a
bijective correspondence with the (d−j−1)-faces of P ∗. This correspon-
dence also reverses inclusion; in particular, the face lattice of P ∗ arises
by turning the face lattice of P upside down.

Again we refer to the reader’s diligence for a proof. Let us examine
a few examples instead.

Among the five regular Platonic solids, the cube and the octahedron
are dual to each other, the dodecahedron and the icosahedron are also
dual, and the tetrahedron is dual to itself. More generally, if we have a
3-dimensional convex polytope and G is its graph, then the graph of the
dual polytope is the dual graph to G, in the usual graph-theoretic sense.
The dual of a d-simplex is a d-simplex, and the d-dimensional cube and
the d-dimensional crosspolytope are dual to each other.

We conclude with two notions of polytopes “in general position.”
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5.3.6 Definition (Simple and simplicial polytopes). A polytope
P is called simplicial if each of its facets is a simplex (this happens, in
particular, if the vertices of P are in general position, but general position
is not necessary). A d-dimensional polytope P is called simple if each of
its vertices is contained in exactly d facets.

The faces of a simplex are again simplices, and so each proper face
of a simplicial polytope is a simplex. Among the five Platonic solids,
the tetrahedron, the octahedron, and the icosahedron are simplicial; and
the tetrahedron, the cube, and the dodecahedron are simple. Crosspoly-
topes are simplicial, and cubes are simple. An example of a polytope
that is neither simplicial nor simple is the 4-sided pyramid used in the
illustration of the face lattice.

The dual of a simple polytope is simplicial, and vice versa. For a
simple d-dimensional polytope, a small neighborhood of each vertex looks
combinatorially like a neighborhood of a vertex of the d-dimensional cube.
Thus, for each vertex v of a d-dimensional simple polytope, there are
d edges emanating from v, and each k-tuple of these edges uniquely
determines one k-face incident to v. Consequently, v belongs to

(

d
k

)

k-
faces, k = 0, 1, . . . , d.

Proof of Proposition 5.3.2. In (i) (“vertices are extremal”), we
assume that P is the convex hull of a finite point set. Among all such
sets, we fix one that is inclusion-minimal and call it V0. Let Vv be the
vertex set of P , and let Ve be the set of all extremal points of P . We prove
that V0 = Vv = Ve, which gives (i). We have Ve ⊆ V0 by the definition of
an extremal point.

Next, we show that Vv ⊆ Ve. If v ∈ Vv is a vertex of P , then there is a
hyperplane h with P ∩h = {v}, and all of P \ {v} lies in one of the open
half-spaces defined by h. Hence P \ {v} is convex, which means that v
is an extremal point of P , and so Vv ⊆ Ve.

Finally we verify V0 ⊆ Vv. Let v ∈ V0; by the inclusion-minimality of
V0, we get that v 6∈ C = conv(V0 \ {v}). Since C and {v} are disjoint
compact convex sets, they can be strictly separated by a hyperplane h.
Let hv be the hyperplane parallel to h and containing v; this hv has all
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points of V0 \ {v} on one side.

C

h

v

hv

We want to show that P ∩ hv = {v} (then v is a vertex of P and
we are done). The set P \ hv = conv(V0) \ hv, being the intersection
of a convex set with an open half-space, is convex. Any segment vx,
where x ∈ P \hv, shares only the point v with the hyperplane hv, and so
(P \hv)∪ {v} is convex as well. Since this set contains V0 and is convex,
it contains P = conv(V0), and so P ∩ hv = {v} indeed.

As for (ii) (“face of a face is a face”), it is clear that a face G of
P contained in F is a face of F too (use the same witnessing hyper-
plane). For the reverse direction, we begin with the case of vertices. By
a consideration similar to that at the end of the proof of (i), we see that
F = conv(V ) ∩ h = conv(V ∩ h). Hence all the extremal points of F ,
which by (i) are exactly the vertices of F , are in V .

Finally, let F be a face of P defined by a hyperplane h, and let G ⊂ F
be a face of F defined by a hyperplane g within h; that is, g is a (d−2)-
dimensional affine subspace of h with G = g ∩ F and with all of F on
one side. Let γ be the closed half-space bounded by h with P ⊂ γ. We
start rotating the boundary h of γ around g in the direction such that
the rotated half-space γ′ still contains F .

h

h′

FG

g

P

If we rotate by a sufficiently small amount, then all the vertices of P not
lying in F are still in the interior of γ′. At the same time, the interior of
γ′ contains all the vertices of F not lying in G, while all the vertices of
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G remain on the boundary h′ of γ′. So h′ defines a face of P (since all of
P is on one side), and this face has the same vertex set as G, and so it
equals G by the first part of (ii) proved above. 2

5.4 Many Faces: The Cyclic Polytopes

A convex polytope P can be given to us by the list of vertices. How
difficult is it to recover the full face lattice, or, more modestly, a repre-
sentation of P as an intersection of half-spaces? The first question to
ask is how large the face lattice or the collection of half-spaces can be,
compared to the number of vertices. That is, what is the maximum total
number of faces, or the maximum number of facets, of a convex polytope
in R

d with n vertices? The dual question is, of course, the maximum
number of faces or vertices of a bounded intersection of n half-spaces in
R

d.

Let fj = fj(P ) denote the number of j-faces of a polytope P . The
vector (f0, f1, . . . , fd) is called the f -vector of P . We thus assume f0 = n
and we are interested in estimating the maximum value of fd−1 and of
∑d

k=0 fk.

In dimensions 2 and 3, the situation is simple and favorable. For
d = 2, our polytope is a convex polygon with n vertices and n edges, and
so f0 = f1 = n, f2 = 1. The f -vector is even determined uniquely.

A 3-dimensional polytope can be regarded as a drawing of a planar
graph, in our case with n vertices. By well-known results for planar
graphs, we have f1 ≤ 3n−6 and f2 ≤ 2n−4. Equalities hold if and only
if the polytope is simplicial (all facets are triangles).

In both cases the total number of faces is linear in n. But as the
dimension grows, polytopes become much more complicated. First of
all, even the total number of faces of the most innocent convex polytope,
the d-dimensional simplex, is exponential in d. But here we consider
d fixed and relatively small, and we investigate the dependence on the
number of vertices n.

Still, as we will see, for every n ≥ 5 there is a 4-dimensional convex
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polytope with n vertices and with every two vertices connected by an
edge, i.e., with

(

n
2

)

edges! This looks counterintuitive, but our intuition
is based on the 3-dimensional case. In any fixed dimension d, the number
of facets can be of order n⌊d/2⌋, which is rather disappointing for some-
one wishing to handle convex polytopes efficiently. On the other hand,
complete desperation is perhaps not appropriate: Certainly not all poly-
topes exhibit this very bad behavior. For example, it is known that if
we choose n points uniformly at random in the unit ball Bd, then the
expected number of faces of their convex hull is only o(n), for every fixed
d.

It turns out that the number of faces for a given dimension and num-
ber of vertices is the largest possible for so-called cyclic polytopes, to be
introduced next. First we define a very useful curve in R

d.

5.4.1 Definition (Moment curve). The curve γ = {(t, t2, . . . , td): t ∈
R} in R

d is called the moment curve.

5.4.2 Lemma. Any hyperplane h intersects the moment curve γ in at
most d points. If there are d intersections, then h cannot be tangent to
γ, and thus at each intersection, γ passes from one side of h to the other.

Proof. A hyperplane h can be expressed by the equation 〈a, x〉 = b, or
in coordinates a1x1 + a2x2 + · · · + adxd = b. A point of γ has the form
(t, t2, . . . , td), and if it lies in h, we obtain a1t+ a2t

2 + · · ·+ adt
d − b = 0.

This means that t is a root of a nonzero polynomial ph(t) of degree at
most d, and hence the number of intersections of h with γ is at most d.
If there are d distinct roots, then they must be all simple. At a simple
root, the polynomial ph(t) changes sign, and this means that the curve
γ passes from one side of h to the other. 2

As a corollary, we see that every d+1 points of the moment curve are
affinely independent, for otherwise, we could pass a hyperplane through
them. So the moment curve readily supplies explicit examples of point
sets in general position.
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5.4.3 Definition (Cyclic polytope). The convex hull of finitely many
points on the moment curve is called a cyclic polytope.

How many facets does a cyclic polytope have? Each facet is deter-
mined by a d-tuple of vertices, and distinct d-tuples determine distinct
facets. Here is a criterion telling us exactly which d-tuples determine
facets.

5.4.4 Proposition (Gale’s evenness criterion). Let V be the vertex
set of a cyclic polytope P considered with the linear ordering ≤ along
the moment curve (larger vertices have larger values of the parameter
t). Let F = {v1, v2, . . . , vd} ⊆ V be a d-tuple of vertices of P , where
v1 < v2 < · · · < vd. Then F determines a facet of P if and only if for any
two vertices u, v ∈ V \ F , the number of vertices vi ∈ F with u < vi < v
is even.

Proof. Let hF be the hyperplane affinely spanned by F . Then F
determines a facet if and only if all the points of V \ F lie on the same
side of hF .

Since the moment curve γ intersects hF in exactly d points, namely
at the points of F , it is partitioned into d+1 pieces, say γ0, . . . , γd, each
lying completely in one of the half-spaces, as is indicated in the drawing:

hF

γ0

γ1

γ2

γ3

γ4

γ5

Hence, if the vertices of V \ F are all contained in the odd-numbered
pieces γ1, γ3, . . ., as in the picture, or if they are all contained in the even-
numbered pieces γ0, γ2, . . ., then F determines a facet. This condition is
equivalent to Gale’s criterion. 2

Now we can count the facets.
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5.4.5 Theorem. The number of facets of a d-dimensional cyclic poly-
tope with n vertices (n ≥ d+1) is

(

n− ⌊d/2⌋
⌊d/2⌋

)

+

(

n− ⌊d/2⌋ − 1

⌊d/2⌋ − 1

)

for d even, and

2

(

n− ⌊d/2⌋ − 1

⌊d/2⌋

)

for d odd.

For fixed d, this has the order of magnitude n⌊d/2⌋.

Proof. The number of facets equals the number of ways of placing d
black circles and n− d white circles in a row in such a way that we have
an even number of black circles between each two white circles.

Let us say that an arrangement of black and white circles is paired if
any contiguous segment of black circles has an even length (the arrange-
ments permitted by Gale’s criterion need not be paired because of the
initial and final segments). The number of paired arrangements of 2k
black circles and n − 2k white circles is

(

n−k
k

)

, since by deleting every
second black circle we get a one-to-one correspondence with selections of
the positions of k black circles among n− k possible positions.

Let us return to the original problem, and first consider an odd d =
2k+1. In a valid arrangement of circles, we must have an odd number of
consecutive black circles at the beginning or at the end (but not both).
In the former case, we delete the initial black circle, and we get a paired
arrangement of 2k black and n−1−2k white circles. In the latter case,
we similarly delete the black circle at the end and again get a paired
arrangement as in the first case. This establishes the formula in the
theorem for odd d.

For even d = 2k, the number of initial consecutive black circles is
either odd or even. In the even case, we have a paired arrangement,
which contributes

(

n−k
k

)

possibilities. In the odd case, we also have an
odd number of consecutive black circles at the end, and so by deleting the
first and last black circles we obtain a paired arrangement of 2(k−1) black
circles and n−2k white circles. This contributes

(

n−k−1
k−1

)

possibilities. 2
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5.5 The Upper Bound Theorem

The upper bound theorem, one of the earlier major achievements of the
theory of convex polytopes, claims that the cyclic polytope has the largest
possible number of faces.

5.5.1 Theorem (Upper bound theorem). Among all d-dimension-
al convex polytopes with n vertices, the cyclic polytope maximizes the
number of faces of each dimension.

In this section we prove only an approximate result, which gives the
correct order of magnitude for the maximum number of facets.

5.5.2 Proposition (Asymptotic upper bound theorem). A d-di-
mensional convex polytope with n vertices has at most 2

(

n
⌊d/2⌋

)

facets and

no more than 2d+1
(

n
⌊d/2⌋

)

faces in total. For d fixed, both quantities thus

have the order of magnitude n⌊d/2⌋.

First we establish this proposition for simplicial polytopes, in the
following form.

5.5.3 Proposition. Let P be a d-dimensional simplicial polytope. Then

(a) f0(P ) + f1(P ) + · · ·+ fd(P ) ≤ 2dfd−1(P ), and

(b) fd−1(P ) ≤ 2f⌊d/2⌋−1(P ).

This implies Proposition 5.5.2 for simplicial polytopes, since the num-
ber of (⌊d/2⌋−1)-faces is certainly no bigger than

(

n
⌊d/2⌋

)

, the number of

all ⌊d/2⌋-tuples of vertices.
Proof of Proposition 5.5.3. We pass to the dual polytope P ∗,
which is simple. Now we need to prove

∑d
k=0 fk(P

∗) ≤ 2df0(P
∗) and

f0(P
∗) ≤ 2f⌈d/2⌉(P

∗).
Each face of P ∗ has at least one vertex, and every vertex of a simple

d-polytope is incident to 2d faces, which gives the first inequality.
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We now bound the number of vertices in terms of the number of ⌈d/2⌉-
faces. This is the heart of the proof, and it shows where the mysterious
exponent ⌊d/2⌋ comes from.

Let us rotate the polytope P ∗ so that no two vertices share the xd-
coordinate (i.e., no two vertices have the same vertical level).

Consider a vertex v with the d edges emanating from it. By the pi-
geonhole principle, there are at least ⌈d/2⌉ edges directed downwards
or at least ⌈d/2⌉ edges directed upwards. In the former case, every
⌈d/2⌉-tuple of edges going up determines a ⌈d/2⌉-face for which v is
the lowest vertex. In the latter case, every ⌈d/2⌉-tuple of edges going
down determines a ⌈d/2⌉-face for which v is the highest vertex. Here is
an illustration, unfortunately for the not too interesting 3-dimensional
case, showing a situation with 2 edges going up and the corresponding
2-dimensional face having v as the lowest vertex:

v

We have exhibited at least one ⌈d/2⌉-face for which v is the lowest vertex
or the highest vertex. Since the lowest vertex and the highest vertex are
unique for each face, the number of vertices is no more than twice the
number of ⌈d/2⌉-faces. 2

Warning. For simple polytopes, the total combinatorial complexity
is proportional to the number of vertices, and for simplicial polytopes it
is proportional to the number of facets (considering the dimension fixed,
that is). For polytopes that are neither simple nor simplicial, the number
of faces of intermediate dimensions can have larger order of magnitude
than both the number of facets and the number of vertices.

Nonsimplicial polytopes. To prove the asymptotic upper bound
theorem, it remains to deal with nonsimplicial polytopes. This is done
by a perturbation argument, similar to numerous other results where
general position is convenient for the proof but where we want to show
that the result holds in degenerate cases as well.
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5.5.4 Lemma. For any d-dimensional convex polytope P there exists a
d-dimensional simplicial polytope Q with f0(P ) = f0(Q) and fk(Q) ≥
fk(P ) for all k = 1, 2, . . . , d.

Proof. The basic idea is very simple: Move (perturb) every vertex of
P by a very small amount, in such a way that the vertices are in general
position, and show that each k-face of P gives rise to at least one k-face
of the perturbed polytope. There are several ways of doing this proof.

We process the vertices one by one. Let V be the vertex set of P
and let v ∈ V . The operation of ε-pushing v is as follows: We choose
a point v′ lying in the interior of P , at distance at most ε from v, and
on no hyperplane determined by the points of V , and we set V ′ = (V \
{v}) ∪ {v′}. If we successively εv-push each vertex v of the polytope,
the resulting vertex set is in general position and we have a simplicial
polytope.

It remains to show that for any polytope P with vertex set V and
any v ∈ V , there is an ε > 0 such that ε-pushing v does not decrease the
number of faces.

Let U ⊂ V be the vertex set of a k-face of P , 0 ≤ k ≤ d−1, and let
V ′ arise from V by ε-pushing v. If v 6∈ U , then no doubt, U determines
a face of conv(V ′), and so we assume that v ∈ U . First suppose that v
lies in the affine hull of U \ {v}; we claim that then U \ {v} determines
a k-face of conv(V ′). This follows from the following criterion, whose
proof is left as an exercise: A subset U ⊂ V is the vertex set of a face of
conv(V ) if and only if the affine hull of U is disjoint from conv(V \ U).
We leave a detailed argument to the reader (one must use the fact that
v is pushed inside).

If v lies outside of the affine hull of U \ {v}, then we want to show
that U ′ = (U \ {v}) ∪ {v′} determines a k-face of conv(V ′). The affine
hull of U is disjoint from the compact set conv(V \ U). If we move v
continuously by a sufficiently small amount, the affine hull of U moves
continuously, and so there is an ε > 0 such that if we move v within
ε from its original position, the considered affine hull and conv(V \ U)
remain disjoint. 2
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5.6 Voronoi Diagrams

Consider a finite set P ⊂ R
d. For each point p ∈ P , we define a region

reg(p), which is the “sphere of influence” of the point p: It consists of
the points x ∈ R

d for which p is the closest point among the points of P .
Formally,

reg(p) = {x ∈ R
d: dist(x, p) ≤ dist(x, q) for all q ∈ P},

where dist(x, y) denotes the Euclidean distance of the points x and y.
The Voronoi diagram of P is the set of all regions reg(p) for p ∈ P .
(More precisely, it is the cell complex induced by these regions; that
is, every intersection of a subset of the regions is a face of the Voronoi
diagram.) Here an example of the Voronoi diagram of a point set in the
plane:

(Of course, the Voronoi diagram is clipped by a rectangle so that it fits
into a finite page.) The points of P are traditionally called the sites in
the context of Voronoi diagrams.

5.6.1 Observation. Each region reg(p) is a convex polyhedron with at
most |P |−1 facets.

Indeed,

reg(p) =
⋂

q∈P\{p}

{x: dist(x, p) ≤ dist(x, q)}
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is an intersection of |P | − 1 half-spaces. 2

For d = 2, a Voronoi diagram of n points is a subdivision of the
plane into n convex polygons (some of them are unbounded). It can be
regarded as a drawing of a planar graph (with one vertex at the infinity,
say), and hence it has a linear combinatorial complexity: n regions, O(n)
vertices, and O(n) edges.

In the literature the Voronoi diagram also appears under various other
names, such as the Dirichlet tessellation.

Examples of applications. Voronoi diagrams have been reinvented
and used in various branches of science. Sometimes the connections are
surprising. For instance, in archaeology, Voronoi diagrams help study
cultural influences. Here we mention a few applications, mostly algorith-
mic.

• (“Post office problem” or nearest neighbor searching) Given a point
set P in the plane, we want to construct a data structure that
finds the point of P nearest to a given query point x as quickly
as possible. This problem arises directly in some practical situa-
tions or, more significantly, as a subroutine in more complicated
problems. The query can be answered by determining the region
of the Voronoi diagram of P containing x. For this problem (point
location in a subdivision of the plane), efficient data structures are
known; see introductory texts on computational geometry.

• (Robot motion planning) Consider a disk-shaped robot in the plane.
It should pass among a set P of point obstacles, getting from a given
start position to a given target position and touching none of the
obstacles.
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If such a passage is possible at all, the robot can always walk along
the edges of the Voronoi diagram of P , except for the initial and
final segments of the tour. This allows one to reduce the robot
motion problem to a graph search problem: We define a subgraph
of the Voronoi diagram consisting of the edges that are passable for
the robot.

• (A nice triangulation: the Delaunay triangulation) Let P ⊂ R
2

be a finite point set. In many applications one needs to construct
a triangulation of P (that is, to subdivide conv(P ) into triangles
with vertices at the points of P ) in such a way that the triangles
are not too skinny. Of course, for some sets, some skinny triangles
are necessary, but we want to avoid them as much as possible. One
particular triangulation that is usually very good, and provably
optimal with respect to several natural criteria, is obtained as the
dual graph to the Voronoi diagram of P . Two points of P are
connected by an edge if and only if their Voronoi regions share an
edge.
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If no 4 points of P lie on a common circle then this indeed de-
fines a triangulation, called the Delaunay triangulation1 of P . The
definition extends to points sets in R

d in a straightforward manner.

• (Interpolation) Suppose that f :R2 → R is some smooth function
whose values are known to us only at the points of a finite set
P ⊂ R

2. We would like to interpolate f over the whole polygon
conv(P ). Of course, we cannot really tell what f looks like outside
P , but still we want a reasonable interpolation rule that provides a
nice smooth function with the given values at P . Multidimensional
interpolation is an extensive semiempirical discipline, which we do
not seriously consider here; we explain only one elegant method
based on Voronoi diagrams. To compute the interpolated value at
a point x ∈ conv(P ), we construct the Voronoi diagram of P , and
we overlay it with the Voronoi diagram of P ∪ {x}.

x
a

b c

d

The region of the new point x cuts off portions of the regions of
some of the old points. Let wp be the area of the part of reg(p) in
the Voronoi diagram of P that belongs to reg(x) after inserting x.
The interpolated value f(x) is

f(x) =
∑

p∈P

wp
∑

q∈P wq
f(p).

An analogous method can be used in higher dimensions, too.

1Being a transcription from Russian, the spelling of Delaunay’s name varies in the
literature. For example, in crystallography literature he is usually spelled “Delone.”
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Relation of Voronoi diagrams to convex polyhedra. We now
show that Voronoi diagrams in R

d correspond to certain convex polyhedra
in R

d+1.

First we define the unit paraboloid in R
d+1:

U = {x ∈ R
d+1: xd+1 = x2

1 + x2
2 + · · ·+ x2

d}.

For d = 1, U is a parabola in the plane.

In the sequel, let us imagine the space Rd as the hyperplane xd+1 = 0
in R

d+1. For a point p = (p1, . . . , pd) ∈ R
d, let e(p) denote the hyperplane

in R
d+1 with equation

xd+1 = 2p1x1 + 2p2x2 + · · ·+ 2pdxd − p21 − p22 − · · · − p2d.

Geometrically, e(p) is the hyperplane tangent to the paraboloid U at
the point u(p) = (p1, p2, . . . , pd, p

2
1 + · · · + p2d) lying vertically above p.

It is perhaps easier to remember this geometric definition of e(p) and
derive its equation by differentiation when needed. On the other hand,
in the forthcoming proof we start out from the equation of e(p), and as a
by-product, we will see that e(p) is the tangent to U at u(p) as claimed.

5.6.2 Proposition. Let p, x ∈ R
d be points and let u(x) be the point

of U vertically above x. Then u(x) lies above the hyperplane e(p) or on
it, and the vertical distance of u(x) to e(p) is δ2, where δ = dist(x, p).

U

p x
xd+1 = 0

e(p)

δ

δ2

u(x)

u(p)
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Proof. We just substitute into the equations of U and of e(p). The
xd+1-coordinate of u(x) is x

2
1 + · · ·+ x2

d, while the xd+1-coordinate of the
point of e(p) above x is 2p1x1+ · · ·+2pdxd−p21−· · ·−p2d. The difference
is (x1 − p1)

2 + · · ·+ (xd − pd)
2 = δ2. 2

Let E(p) denote the half-space lying above the hyperplane e(p). Con-
sider an n-point set P ⊂ R

d. By Proposition 5.6.2, x ∈ reg(p) holds if
and only if e(p) is vertically closest to U at x among all e(q), q ∈ P . Here
is what we have derived:

5.6.3 Corollary. The Voronoi diagram of P is the vertical projection of
the facets of the polyhedron

⋂

p∈P E(p) onto the hyperplane xd+1 = 0.
2

Here is an illustration for a planar Voronoi diagram:

5.6.4 Corollary. The maximum total number of faces of all regions of
the Voronoi diagram of an n-point set in R

d is O(n⌈d/2⌉).

Proof. We know that the combinatorial complexity of the Voronoi
diagram equals the combinatorial complexity of an H-polyhedron with
at most n facets in R

d+1. By intersecting this H-polyhedron with a
large simplex we can obtain a bounded polytope with at most n+d+2
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facets, and we have not decreased the number of faces compared to the
original H-polyhedron. Then the dual version of the asymptotic upper
bound theorem (Theorem 5.5.2) implies that the total number of faces is
O(n⌈d/2⌉), since ⌊(d+1)/2⌋ = ⌈d/2⌉. 2

The convex polyhedra in R
d+1 obtained from Voronoi diagrams in R

d

by the above construction are rather special, and so a lower bound for the
combinatorial complexity of convex polytopes cannot be automatically
transferred to Voronoi diagrams. But it turns out that the number of
vertices of a Voronoi diagram on n points in R

d can really be of order
n⌈d/2⌉.

The farthest-point Voronoi diagram. The projection of the H-
polyhedron

⋂

p∈P E(p)op, where γop denotes the half-space opposite to γ,
forms the farthest-neighbor Voronoi diagram, in which each point p ∈ P
is assigned the regions of points for which it is the farthest point. It
can be shown that all nonempty regions of this diagram are unbounded
and they correspond precisely to the points appearing on the surface
of conv(P ).
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Number of Faces in Arrangements

Arrangements of lines in the plane and their higher-dimensional gen-
eralization, arrangements of hyperplanes in R

d, are a basic geometric
structure whose significance is comparable to that of convex polytopes.
In fact, arrangements and convex polytopes are quite closely related: A
cell in a hyperplane arrangement is a convex polyhedron, and conversely,
each hyperplane arrangement in R

d corresponds canonically to a convex
polytope in R

d+1 of a special type, the so-called zonotope. But as is
often the case with different representations of the same mathematical
structure, convex polytopes and arrangements of hyperplanes emphasize
different aspects of the structure and lead to different questions.

Whenever we have a problem involving a finite point set in R
d and

partitions of the set by hyperplanes, we can use geometric duality, and
we obtain a problem concerning a hyperplane arrangement. Arrange-
ments appear in many other contexts as well; for example, some models
of molecules give rise to arrangements of spheres in R

3, and automatic
planning of the motion of a robot among obstacles involves, implicitly or
explicitly, arrangements of surfaces in higher-dimensional spaces.

Arrangements of hyperplanes have been investigated for a long time
from various points of view. In several classical areas of mathematics one
is mainly interested in topological and algebraic properties of the whole
arrangement. Hyperplane arrangements are related to such marvelous
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objects as Lie algebras, root systems, and Coxeter groups. In the theory
of oriented matroids one studies the systems of sign vectors associated
to hyperplane arrangements in an abstract axiomatic setting.

We are going to concentrate on estimating the combinatorial complex-
ity (number of faces) in arrangements and neglect all the other directions.

General probabilistic techniques for bounding the complexity of geo-
metric configurations constitute the second main theme of this chapter.
These methods have been successful in attacking many more problems
than can even be mentioned here.

6.1 Arrangements of Hyperplanes

Consider a finite set H of lines in the plane. They divide the plane into
convex subsets of various dimensions, as is indicated in the following
picture with 4 lines:

The intersections of the lines, indicated by black dots, are called the
vertices or 0-faces. By removing all the vertices lying on a line h ∈ H ,
the line is split into two unbounded rays and several segments, and these
parts are the edges or 1-faces. Finally, by deleting all the lines of H ,
the plane is divided into open convex polygons, called the cells or 2-
faces. The vertices, edges, and cells are together called faces, and the
arrangement of H is the collection of all these faces.1

1The terminology is not unified in the literature. What we call faces are sometimes
referred to as cells (0-cells, 1-cells, and 2-cells).
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An arrangement of a finite set H of hyperplanes in R
d is again a

partition of Rd into relatively open convex faces. Their dimensions are
0 through d. As in the plane, the 0-faces are called vertices, the 1-faces
edges, and the d-faces cells. Sometimes the (d−1)-faces are referred to
as facets.

The cells are the connected components of Rd \⋃H . To obtain the
facets, we consider the (d−1)-dimensional arrangements induced in the
hyperplanes of H by their intersections with the other hyperplanes. That
is, for each h ∈ H we take the connected components of h\⋃h′∈H:h′ 6=h h

′.
To obtain k-faces, we consider every possible k-flat L defined as the inter-
section of some d−k hyperplanes of H . The k-faces of the arrangement
lying within L are the connected components of L \ ⋃

(H \HL), where
HL = {h ∈ H : L ⊆ h}.
Counting the cells in a hyperplane arrangement. We want to
count the maximum number of faces in an arrangement of n hyperplanes
in R

d. As we will see, this is much simpler than the similar task for
convex polytopes!

If a set H of hyperplanes is in general position, which means that the
intersection of every k hyperplanes is (d−k)-dimensional, k = 2, 3, . . . , d+1,
the arrangement of H is called simple. For |H| ≥ d+1 it suffices to re-
quire that every d hyperplanes intersect at a single point and no d+1
have a common point.

Every d-tuple of hyperplanes in a simple arrangement determines ex-
actly one vertex, and so a simple arrangement of n hyperplanes has ex-
actly

(

n
d

)

vertices. We now calculate the number of cells; it turns out
that the order of magnitude is also nd for d fixed.

6.1.1 Proposition. The number of cells (d-faces) in a simple arrange-
ment of n hyperplanes in R

d equals

Φd(n) =

(

n

0

)

+

(

n

1

)

+ · · ·+
(

n

d

)

. (6.1)

First proof. We proceed by induction on the dimension d and the
number of hyperplanes n. For d = 1 we have a line and n points in it.
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These divide the line into n+1 one-dimensional pieces, and formula (6.1)
holds. (The formula is also correct for n = 0 and all d ≥ 1, since the
whole space, with no hyperplanes, is a single cell.)

Now suppose that we are in dimension d, we have n−1 hyperplanes,
and we insert another one. Since we assume general position, the n−1
previous hyperplanes divide the newly inserted hyperplane h into Φd−1(n−1)
cells by the inductive hypothesis. Each such (d−1)-dimensional cell
within h partitions one d-dimensional cell into exactly two new cells.
The total increase in the number of cells caused by inserting h is thus
Φd−1(n−1), and so

Φd(n) = Φd(n− 1) + Φd−1(n− 1).

Together with the initial conditions (for d = 1 and for n = 0), this
recurrence determines all values of Φ, and so it remains to check that
formula (6.1) satisfies the recurrence. We have

Φd(n− 1) + Φd−1(n− 1) =
(

n−1
0

)

+
[(

n−1
1

)

+
(

n−1
0

)]

+
[(

n−1
2

)

+
(

n−1
1

)]

+ · · ·+
[(

n−1
d

)

+
(

n−1
d−1

)]

=
(

n−1
0

)

+
(

n
1

)

+
(

n
2

)

+ · · ·+
(

n
d

)

= Φd(n).

2

Second proof. This proof looks simpler, but a complete rigorous
presentation is perhaps somewhat more demanding.

We proceed by induction on d, the case d = 0 being trivial. Let H
be a set of n hyperplanes in R

d in general position; in particular, we
assume that no hyperplane of H is horizontal and no two vertices of the
arrangement have the same vertical level (xd-coordinate).

Let g be an auxiliary horizontal hyperplane lying below all the ver-
tices. A cell of the arrangement of H either is bounded from below, and
in this case it has a unique lowest vertex, or is not bounded from below,
and then it intersects g. The number of cells of the former type is the
same as the number of vertices, which is

(

n
d

)

. The cells of the latter type
correspond to the cells in the (d−1)-dimensional arrangement induced
within g by the hyperplanes of H , and their number is thus Φd−1(n). 2
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What is the number of faces of the intermediate dimensions 1, 2, . . . , d−1
in a simple arrangement of n hyperplanes? This is not difficult to cal-
culate using Proposition 6.1.1 (exercise); the main conclusion is that the
total number of faces is O(nd) for a fixed d.

What about nonsimple arrangements? It turns out that a simple
arrangement of n hyperplanes maximizes the number of faces of each
dimension among arrangements of n hyperplanes. This can be verified
by a perturbation argument, which is considerably simpler than the one
for convex polytopes (Lemma 5.5.4), and which we omit.

6.2 Arrangements of Other Geometric Objects

Arrangements can be defined not only for hyperplanes but also for other
geometric objects. For example, what is the arrangement of a finite set H
of segments in the plane? As in the case of lines, it is a decomposition of
the plane into faces of dimension 0, 1, 2: the vertices, the edges, and the
cells, respectively. The vertices are the intersections of the segments, the
edges are the portions of the segments after removing the vertices, and the
cells (2-faces) are the connected components of R2 \⋃H . (Note that the
endpoints of the segments are not included among the vertices.) While
the cells of line arrangements are convex polygons, those in arrangements
of segments can be complicated regions, even with holes:

It is almost obvious that the total number of faces of the arrangement of
n segments is at most O(n2). What is the maximum number of edges on
the boundary of a single cell in such an arrangements? This seemingly
innocuous question is surprisingly difficult (and we will not discuss it
here).

Let us now present the definition of the arrangement for arbitrary
sets A1, A2, . . . , An ⊆ R

d. The arrangement is a subdivision of space
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into connected pieces again called the faces. Each face is an inclusion-
maximal connected set that “crosses no boundary.” More precisely, first
we define an equivalence relation ≈ on R

d: We put x ≈ y whenever x
and y lie in the same subcollection of the Ai, that is, whenever {i: x ∈
Ai} = {i: y ∈ Ai}. So for each I ⊆ {1, 2, . . . , n}, we have one possible
equivalence class, namely {x ∈ R

d: x ∈ Ai ⇔ i ∈ I} (this is like a field in
the Venn diagram of the Ai). But in typical geometric situations, most
of the classes are empty. The faces of the arrangement of the Ai are the
connected components of the equivalence classes. The reader is invited
to check that for both hyperplane arrangements and arrangements of
segments this definition coincides with the earlier ones.

Arrangements of algebraic surfaces. Quite often one needs to con-
sider arrangements of the zero sets of polynomials. Let p1(x1, x2, . . . , xd),. . . ,
pn(x1, x2, . . . , xd) be polynomials with real coefficients in d variables, and
let Zi = {x ∈ R

d: pi(x) = 0} be the zero set of pi. Let D denote the
maximum of the degrees of the pi; when speaking of the arrangement
of Z1, . . . , Zn, one usually assumes that D is bounded by some (small)
constant. Without a bound on D, even a single Zi can have arbitrarily
many connected components.

In many cases, the Zi are algebraic surfaces, such as ellipsoids, paraboloids,
etc., but since we are in the real domain, sometimes they need not
look like surfaces at all. For example, the zero set of the polynomial
p(x1, x2) = x2

1 + x2
2 consists of the single point (0, 0). Although it is

sometimes convenient to think of the Zi as surfaces, the results stated
below apply to zero sets of arbitrary polynomials of bounded degree.

It is known that if both d and D are considered as constants, the
maximum number of faces in the arrangement of Z1, Z2, . . . , Zn as above
is at most O(nd). This is one of the most useful results about arrange-
ments, with many surprising applications (a few are outlined below). In
the literature one often finds a (formally weaker) version dealing with
sign patterns of the polynomials pi. A vector σ ∈ {−1, 0,+1}n is called
a sign pattern of p1, p2, . . . , pn if there exists an x ∈ R

d such that the
sign of pi(x) is σi, for all i = 1, 2, . . . , n. Trivially, the number of sign
patterns for any n polynomials is at most 3n. For d = 1, it is easy to



82 Chapter 6: Number of Faces in Arrangements

see that the actual number of sign patterns is much smaller, namely at
most 2nD + 1. It is not so easy to prove, but still true, that there are
at most C(d,D) · nd sign patterns in dimension d. This result is gener-
ally called the Milnor–Thom theorem (and it was apparently first proved
by Oleinik and Petrovskǐı, which fits the usual pattern in the history of
mathematics). Here is a more precise (and more recent) version of this
result, where the dependence on D and d is specified quite precisely.

6.2.1 Theorem (Number of sign patterns). Let p1, p2, . . . , pn be
d-variate real polynomials of degree at most D. The number of faces
in the arrangement of their zero sets Z1, Z2, . . . , Zn ⊆ R

d, and con-
sequently the number of sign patterns of p1, . . . , pn as well is at most
2(2D)d

∑d
i=0 2

i
(

4n+1
i

)

. For n ≥ d ≥ 2, this expression is bounded by

(

50Dn

d

)d

.

Proofs of these results are not included here because they would re-
quire at least one more chapter. They belong to the field of real al-
gebraic geometry. The classical, deep, and extremely extensive field of
algebraic geometry mostly studies algebraic varieties over algebraically
closed fields, such as the complex numbers (and the questions of combi-
natorial complexity in our sense are not among its main interests). Real
algebraic geometry investigates algebraic varieties and related concepts
over the real numbers or other real-closed fields; the presence of ordering
and the missing roots of polynomials make its flavor distinctly different.

Arrangements of pseudolines. An arrangement of pseudolines is
a natural generalization of an arrangement of lines. Lines are replaced
by curves, but we insist that these curves behave, in a suitable sense,
like lines: For example, no two of them intersect more than once. This
kind of generalization is quite different from, say, arrangements of planar
algebraic curves, and so it perhaps does not quite belong to the present
section. But besides mentioning pseudoline arrangements as a useful
and interesting concept, we also need them for a (typical) example of



6.2 Arrangements of Other Geometric Objects 83

application of Theorem 6.2.1, and so we kill two birds with one stone by
discussing them here.

An (affine) arrangement of pseudolines can be defined as the arrange-
ment of a finite collection of curves in the plane that satisfy the following
conditions:

(i) Each curve is x-monotone and unbounded in both directions; in
other words, it intersects each vertical line in exactly one point.

(ii) Every two of the curves intersect in exactly one point and they cross
at the intersection. (We do not permit “parallel” pseudolines, for
they would complicate the definition unnecessarily.)2

The curves are called pseudolines, but while “being a line” is an absolute
notion, “being a pseudoline” makes sense only with respect to a given
collection of curves.

Here is an example of a (simple) arrangement of 5 pseudolines:

1
2
3
4

5

Much of what we have proved for arrangements of lines is true for ar-
rangements of pseudolines as well. This holds for the maximum number
of vertices, edges, and cells, but also for more sophisticated results like
the Szemerédi–Trotter theorem on the maximum number of incidences

2This “affine” definition is a little artificial, and we use it only because we do not
want to assume the reader’s familiarity with the topology of the projective plane.
In the literature one usually considers arrangements of pseudolines in the projective
plane, where the definition is very natural: Each pseudoline is a closed curve whose
removal does not disconnect the projective plane, and every two pseudolines intersect
exactly once (which already implies that they cross at the intersection point). More-
over, one often adds the condition that the curves do not form a single pencil; i.e.,
not all of them have a common point, since otherwise, one would have to exclude the
case of a pencil in the formulation of many theorems. But here we are not going to
study pseudoline arrangements in any depth.



84 Chapter 6: Number of Faces in Arrangements

of m points and n lines; these results have proofs that do not use any
properties of straight lines not shared by pseudolines.

One might be tempted to say that pseudolines are curves that behave
topologically like lines, but as we will see below, in at least one sense this
is profoundly wrong. The correct statement is that every two of them
behave topologically like two lines, but arrangements of pseudolines are
more general than arrangements of lines.

We should first point out that there is no problem with the “local”
structure of the pseudolines, since each pseudoline arrangement can be
redrawn equivalently (in a sense defined precisely below) by polygonal
lines, as a wiring diagram:

1

2

3

4

5

The difference between pseudoline arrangements and line arrangements
is of a more global nature.

The arrangement of 5 pseudolines drawn above can be realized by
straight lines:

1
2

3

4
5

What is the meaning of “realization by straight lines”? To this end,
we need a suitable notion of equivalence of two arrangements of pseudo-
lines. There are several technically different possibilities; we again use
an “affine” notion, one that is very simple to state but not the most
common. Let H be a collection of n pseudolines. We number the pseu-
dolines 1, 2, . . . , n in the order in which they appear on the left of the
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arrangement, say from the bottom to the top. For each i, we write down
the numbers of the other pseudolines in the order they are encountered
along the pseudoline i from left to right. For a simple arrangement we
obtain a permutation πi of {1, 2, . . . , n} \ {i} for each i. For the ar-
rangement in the pictures, we have π1 = (2, 3, 5, 4), π2 = (1, 5, 4, 3),
π3 = (1, 5, 4, 2), π4 = (5, 1, 3, 2), and π5 = (4, 1, 3, 2). For a nonsim-
ple arrangement, some of the πi are linear quasiorderings, meaning that
several consecutive numbers can be chunked together. We call two ar-
rangements affinely isomorphic if they yield the same π1, . . . , πn, i.e., if
each pseudoline meets the others in the same (quasi)order as the corre-
sponding pseudoline in the other arrangement. Two affinely isomorphic
pseudoline arrangements can be converted one to another by a suitable
homeomorphism of the plane.

An arrangement of pseudolines is stretchable if it is affinely isomorphic
to an arrangement of straight lines. It turns out that all arrangements of
8 or fewer pseudolines are stretchable, but there exists a nonstretchable
arrangement of 9 pseudolines:

p
q

r

The proof of nonstretchability is based on the Pappus theorem in pro-
jective geometry, which states that if 8 straight lines intersect as in the
drawing, then the points p, q, and r are collinear. By modifying this ar-
rangement suitably, one can obtain a simple nonstretchable arrangement
of 9 pseudolines as well.

Next, we show that most of the simple pseudoline arrangements are
nonstretchable. The following construction shows that the number of
isomorphism classes of simple arrangements of n pseudolines is at least
2Ω(n2):
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h1

hm
...
h2

g1

gm
...
g2

p1
p2

We have m ≈ n
3
, and the lines h1, . . . , hm and g1, . . . , gm form a regular

grid. Each of the about n
3
pseudolines pi in the middle passes near Ω(n)

vertices of this grid, and for each such vertex it has a choice of going
below it or above. This gives 2Ω(n2) possibilities in total.

Now we use Theorem 6.2.1 to estimate the number of nonisomorphic
simple arrangements of n straight lines. Let the lines be ℓ1, . . . , ℓn, where
ℓi has the equation y = aix+bi and a1 > a2 > · · · > an. The x-coordinate
of the intersection ℓi ∩ ℓj is

bi−bj
aj−ai

. To determine the ordering πi of the

intersections along ℓi, it suffices to know the ordering of the x-coordinates
of these intersections, and this can be inferred from the signs of the
polynomials pijk(ai, bi, aj, bj , ak, bk) = (bi−bj)(ak−ai)−(bi−bk)(aj−ai).
So the number of nonisomorphic arrangements of n lines is no larger
than the number of possible sign patterns of the O(n3) polynomials pijk
in the 2n variables a1, b1, . . . , an, bn, and Theorem 6.2.1 yields the upper
bound of 2O(n logn). For large n, this is a negligible fraction of the total
number of simple pseudoline arrangements. (Similar considerations apply
to nonsimple arrangements as well.)

The problem of deciding the stretchability of a given pseudoline ar-
rangement has been shown to be algorithmically difficult (at least NP-
hard). One can easily encounter this problem when thinking about line
arrangements and drawing pictures: What we draw by hand are really
pseudolines, not lines, and even with the help of a ruler it may be almost
impossible to decide experimentally whether a given arrangement can re-
ally be drawn with straight lines. But there are computational methods
that can decide stretchability in reasonable time at least for moderate
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numbers of lines.

6.3 Number of Vertices of Level at Most k

In this section and the next one we investigate the maximum number of
faces in certain naturally defined portions of hyperplane arrangements.
We consider only simple arrangements, and we omit the (usually routine)
perturbation arguments showing that simple arrangements maximize the
investigated quantity.

Let H be a finite set of hyperplanes in R
d, and assume that none of

them is vertical, i.e., parallel to the xd-axis. The level of a point x ∈ R
d

is the number of hyperplanes of H lying strictly below x (the hyperplanes
passing through x, if any, are not counted).

We are interested in the maximum possible number of vertices of level
at most k in a simple arrangement of n hyperplanes. The following draw-
ing shows the region of all points of level at most 2 in an arrangement of
lines; we want to count the vertices lying in the region or on its boundary.

The vertices of level 0 are the vertices of the cell lying below all the
hyperplanes, and since this cell is the intersection of at most n half-spaces,
it has at most O(n⌊d/2⌋) vertices, by the asymptotic upper bound theorem
(Theorem 5.5.2). From this result we derive a bound on the maximum
number of vertices of level at most k. The elegant probabilistic technique
used in the proof is generally applicable and probably more important
than the particular result itself.
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6.3.1 Theorem (Clarkson’s theorem on levels). The total number
of vertices of level at most k in an arrangement of n hyperplanes in R

d

is at most
O(n⌊d/2⌋(k+1)⌈d/2⌉),

with the constant of proportionality depending on d.

We are going to prove the theorem for simple arrangements only. The
general case can be derived from the result for simple arrangements by a
standard perturbation argument. But let us stress that the simplicity of
the arrangement is essential for the forthcoming proof.

For all k (0 ≤ k ≤ n−d), the bound is tight in the worst case. To see
this for k ≥ 1, consider a set of n

k
hyperplanes such that the lower un-

bounded cell in their arrangement is a convex polyhedron with Ω((n
k
)⌊d/2⌋)

vertices, and replace each of the hyperplanes by k very close parallel hy-
perplanes. Then each vertex of level 0 in the original arrangement gives
rise to Ω(kd) vertices of level at most k in the new arrangement.

A much more challenging problem is to estimate the maximum pos-
sible number of vertices of level exactly k (not discussed here).

One of the main motivations that led to Clarkson’s theorem on levels
was an algorithmic problem. Given an n-point set P ⊂ R

d, we want to
construct a data structure for fast answering of queries of the following
type: For a query point x ∈ R

d and an integer t, report the t points of
P that lie nearest to x.

Clarkson’s theorem on levels is needed for bounding the maximum
amount of memory used by a certain efficient algorithm. The connec-
tion is not entirely simple. It uses the lifting transform described in
Section 5.6, relating the algorithmic problem in R

d to the complexity of
levels in R

d+1, and we do not discuss it here.

Proof of Theorem 6.3.1 for d = 2. We prove only this special case,
for which the calculations are somewhat simpler.

Let H be a set of n lines in general position in the plane. Let p
denote a certain suitable number in the interval (0, 1) whose value will
be determined at the end of the proof. Let us imagine the following
random experiment. We choose a subset R ⊆ H at random, by including
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each line h ∈ H into R with probability p, the choices being independent
for distinct lines h.

Let us consider the arrangement of R, temporarily discarding all the
other lines, and let f(R) denote the number of vertices of level 0 in the
arrangement of R. Since R is random, f is a random variable. We
estimate the expectation of f , denoted by E[f ], in two ways.

First, we have f(R) ≤ |R| for any specific set R, and hence E[f ] ≤
E[|R|] = pn.

Now we estimate E[f ] differently: We bound it from below using the
number of vertices of the arrangement of H of level at most k. For each
vertex v of the arrangement of H , we define an event Av meaning “v
becomes one of the vertices of level 0 in the arrangement of R.” That
is, Av occurs if v contributes 1 to the value of f . The event Av occurs if
and only if the following two conditions are satisfied:

• Both lines determining the vertex v lie in R.

• None of the lines of H lying below v falls into R.

v
these must be in R

these must not be in R

We deduce that Prob[Av] = p2(1− p)ℓ(v), where ℓ(v) denotes the level of
the vertex v.

Let V be the set of all vertices of the arrangement of H , and let
V≤k ⊆ V be the set of vertices of level at most k, whose cardinality we
want to estimate. We have

E[f ] =
∑

v∈V

Prob[Av] ≥
∑

v∈V≤k

Prob[Av]

=
∑

v∈V≤k

p2(1− p)ℓ(v) ≥
∑

v∈V≤k

p2(1− p)k = |V≤k| · p2(1− p)k.
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Altogether we have derived np ≥ E[f ] ≥ |V≤k| · p2(1− p)k, and so

|V≤k| ≤
n

p(1− p)k
.

Let us now choose the number p so as to minimize the right-hand side.
A convenient value is p = 1

k+1
; it does not yield the exact minimum, but

it comes close. We have
(

1− 1
k+1

)k ≥ e−1 > 1
3
for all k ≥ 1. This leads

to |V≤k| ≤ 3(k+1)n. 2

Levels in arrangements. Besides vertices, we can consider all faces
of level at most k, where the level of a face is the (common) level of
all of its points. Using Theorem 6.3.1, it is not hard to prove that the
number of all faces of level at most k in an arrangement of n hyperplanes
is O(n⌊d/2⌋(k+1)⌈d/2⌉).

In the literature one often speaks about the level k in an arrangement
of hyperplanes, meaning the boundary of the region of all points of level
at most k. This is a polyhedral surface and each vertical line intersects
it in exactly one point. It is a subcomplex of the arrangement; note that
it may also contain faces of level different from k.

6.4 The Zone Theorem

Let H be a set of n hyperplanes in R
d, and let g be a hyperplane that

may or may not lie in H . The zone of g is the set of the faces of the
arrangement of H that can see g. Here we imagine that the hyperplanes
of H are opaque, and so we say that a face F can see the hyperplane g if
there are points x ∈ F and y ∈ g such that the open segment xy is not
intersected by any hyperplane of H (the face F is considered relatively
open). Let us note that it does not matter which point x ∈ F we choose:
Either all of them can see g or none can. The picture shows the zone in
a line arrangement:
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g

The following result bounds the maximum complexity of the zone. In
the proof we will meet another interesting random sampling technique.

6.4.1 Theorem (Zone theorem). The number of faces in the zone
of any hyperplane in an arrangement of n hyperplanes in R

d is O(nd−1),
with the constant of proportionality depending on d.

We prove the result only for simple arrangements; the general case
follows, as usual, by a perturbation argument. Let us also assume that
g 6∈ H and that H ∪ {g} is in general position.

It is clear that the zone has O(nd−1) cells , because each (d−1)-dimen-
sional cell of the (d−1)-dimensional arrangement within g is intersects
only one d-dimensional cell of the zone. On the other hand, this infor-
mation is not sufficient to conclude that the total number of vertices of
these cells is O(nd−1): For example, it turns out that n arbitrarily chosen
cells in an arrangement of n lines in the plane can together have as many
as Ω(n4/3) vertices.

Proof. We proceed by induction on the dimension d. The base case
is d = 2; it requires a separate treatment and does not follow from the
trivial case d = 1 by the inductive argument shown below.

The case d = 2. LetH be a set of n lines in the plane in general position.
We consider the zone of a line g. Since a convex polygon has the same
number of vertices and edges, it suffices to bound the total number of
1-faces (edges) visible from the line g.

Imagine g drawn horizontally. We count the number of visible edges
lying above g. Among those, at most n intersect the line g, since each
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line of H gives rise to at most one such edge. The others are disjoint
from g.

Consider an edge uv disjoint from g and visible from a point of g.
Let h ∈ H be the line containing uv, and let a be the intersection of h
with g:

g
a b

u

v

x y

ℓ

Let the notation be chosen in such a way that u is closer to a than v,
and let ℓ ∈ H be the second line (besides h) defining the vertex u. Let b
denote the intersection ℓ ∩ g. Let us call the edge uv a right edge of the
line ℓ if the point b lies to the right of a, and a left edge of the line ℓ if b
lies to the left of a.

We show that for each line ℓ there exists at most one right edge. If
it were not the case, there would exist two edges, uv and xy, where u
lies lower than x, which would both be right edges of ℓ, as in the above
drawing. The edge xy should see some point of the line g, but the part
of g lying to the right of a is obscured by the line h, and the part left
of a is obscured by the line ℓ. This contradiction shows that the total
number of right edges is at most n.

Symmetrically, we see that the number of left edges in the zone is
at most n. The same bounds are obtained for edges of the zone lying
below g. Altogether we have at most O(n) edges in the zone, and the
2-dimensional case of the zone theorem is proved.

The case d > 2. Here we make the inductive step from d−1 to d. We
assume that the total number of faces of a zone in R

d−1 is O(nd−2), and
we want to bound the total number of zone faces in R

d.
The first idea is to proceed by induction on n, bounding the maximum

possible number of new faces created by adding a new hyperplane to
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n−1 given ones. However, it is easy to find examples showing that the
number of faces can increase roughly by nd−1, and so this straightforward
approach fails.

In the actual proof, we use a clever averaging argument. First, we
demonstrate the method for the slightly simpler case of counting only
the facets (i.e., (d−1)-faces) of the zone.

Let f(n) denote the maximum possible number of (d−1)-faces in the
zone in an arrangement of n hyperplanes in R

d (the dimension d is not
shown in the notation in order to keep it simple). Let H be an arrange-
ment and g a base hyperplane such that f(n) is attained for them.

We consider the following random experiment. Color a randomly
chosen hyperplane h ∈ H red and the other hyperplanes of H blue. We
investigate the expected number of blue facets of the zone, where a facet
is blue if it lies in a blue hyperplane.

On the one hand, any facet has probability n−1
n

of becoming blue, and
hence the expected number of blue facets is n−1

n
f(n).

We bound the expected number of blue facets in a different way.
First, we consider the arrangement of blue hyperplanes only; it has at
most f(n−1) blue facets in the zone by the inductive hypothesis. Next,
we add the red hyperplane, and we look by how much the number of blue
facets in the zone can increase.

A new blue facet can arise by adding the red hyperplane only if the
red hyperplane slices some existing blue facet F into two parts F1 and
F2, as is indicated in the picture:
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g

h

g ∩ h

F ∩ h

F1

F2

This increases the number of blue facets in the zone only if both F1 and
F2 are visible from g. In such a case we look at the situation within the
hyperplane h; we claim that F ∩ h is visible from g ∩ h.

Let C be a cell of the zone in the arrangement of the blue hyperplanes
having F on the boundary. We want to exhibit a segment connecting
F ∩ h to g ∩ h within C. If x1 ∈ F1 sees a point y1 ∈ g and x2 ∈ F2 sees
y2 ∈ g, then the whole interior of the tetrahedron x1x2y1y2 is contained
in C. The intersection of this tetrahedron with the hyperplane h contains
a segment witnessing the visibility of g ∩ h from F ∩ h.

If we intersect all the blue hyperplanes and the hyperplane g with
the red hyperplane h, we get a (d−1)-dimensional arrangement, in which
F ∩ h is a facet in the zone of the (d−2)-dimensional hyperplane g ∩ h.
By the inductive hypothesis, this zone has O(nd−2) facets. Hence, adding
h increases the number of blue facets of the zone by O(nd−2), and so the
total number of blue facets after h has been added is never more than
f(n−1) +O(nd−2).

We have derived the following inequality:

n− 1

n
f(n) ≤ f(n−1) +O(nd−2).

It implies f(n) = O(nd−1), as we will demonstrate later for a slightly
more general recurrence.



6.4 The Zone Theorem 95

The previous considerations can be generalized for (d−k)-faces, where
1 ≤ k ≤ d−2. Let fj(n) denote the maximum possible number of j-faces
in the zone for n hyperplanes in dimension d. Let H be a collection of n
hyperplanes where fd−k(n) is attained.

As before, we color one randomly chosen hyperplane h ∈ H red and
the others blue. A (d−k)-face is blue if its relative interior is disjoint
from the red hyperplane. Then the probability of a fixed (d−k)-face
being blue is n−k

n
, and the expected number of blue (d−k)-faces in the

zone is at most n−k
n
fd−k(n).

On the other hand, we find that by adding the red hyperplane, the
number of blue (d−k)-faces can increase by at most O(nd−2), by the
inductive hypothesis and by an argument similar to the case of facets.
This yields the recurrence

n− k

n
fd−k(n) ≤ fd−k(n−1) +O(nd−2).

We use the substitution ϕ(n) =
fd−k(n)

n(n−1)···(n−k+1)
, which transforms our

recurrence to ϕ(n) ≤ ϕ(n−1) +O(nd−k−2). We assume k < d−1 (so the
considered faces must not be edges or vertices). Then the last recurrence
yields ϕ(n) = O(nd−k−1), and hence fd−k(n) = O(nd−1).

For the case k = d−1 (edges), we would get only the bound f1(n) =
O(nd−1 log n) by this method. So the number of edges and vertices must
be bounded by a separate argument, and we also have to argue separately
for the planar case.

We are going to show that the number of vertices of the zone is at most
proportional to the number of the 2-faces of the zone. Every vertex is
contained in some 3-face of the zone. Within each such 3-face, the number
of vertices is at most 3 times the number of 2-faces, because the 3-face
is a 3-dimensional convex polyhedron. Since our arrangement is simple,
each 2-face is contained in a bounded number of 3-faces. It follows that
the total number of vertices is at most proportional to f2(n) = O(nd−1).
The analogous bound for edges follows immediately from the bound for
vertices. 2


