Combinatorial and Computational Geometry I 2019/2020
Kombinatoricka a vypocetni geometrie I 2019/2020
(Jan Kyncl, Martin Tancer, KAM)
Lecture: Fridays at 9:00 in S9.
Prednaska: v patek od 9:00 v S9.
Exercise sessions: after the lecture at 10:40 in S9 according to the schedule on the
exercise webpage.
Cviceni: po prednasce 10:40 v S9 podle rozvrhu na
strance cviceni.
Extent of teaching: WINTER semester 2/2 (Exam and Exercise credit). Entry in SIS, syllabus
Rozsah vyuky: ZIMNI semestr 2/2 Z, Zk. Záznam v SISu, sylabus
Annotation
Discrete geometry investigates combinatorial properties of geometric objects such as finite point sets or convex sets in Euclidean spaces. Computational geometry considers the design of efficient algorithms for computing with geometric configurations, and discrete geometry serves as its mathematical foundation. Part I of the course is a concise introduction.
The lecture will be very similar to the last year.
The contents of Part II varies among the years, each year covering a few selected topics in more depth.
Anotace
Vypocetni geometrie se zabyva navrhem efektivnich algoritmu pro geometricke
problemy v rovine i ve vicedimenzionalnim prostoru (napr. je-li dano n
bodu v rovine, jak co nejefektivneji najit dvojici bodu s nejmensi vzdalenosti).
Takove problemy jsou motivovany aplikacemi v pocitacove grafice, prostorovem
modelovani (napr. molekul, budov, soucastek), geografickych informacnich
systemech a pod. Pri analyze takovych algoritmu se potrebuje kombinatoricka
geometrie, studujici kombinatoricke vlastnosti geometrickych konfiguraci,
konvexnich mnozin a pod. Vysledky jsou dulezite i z ciste matematickeho
hlediska, napr. v teorii cisel. V teto uvodni prednasce se probiraji zakladni
pojmy a metody, s durazem na matematicky zaklad (jine mozne podani by bylo
z vice "informatickeho" hlediska, s durazem na datove struktury, implementaci
algoritmu apod.). O naplni prednasky si muzete udelat lepsi predstavu
podle latky probirane
v minulych letech.
Literature
-
Jiri Matousek's lecture notes Introduction to Discrete Geometry, ITI Series 2003-150, available in the Computer Science library of MFF UK.
Here is a postscript file with two pages of text on one A4 page, intended for printing.
Here is a PDF file for readers and tablets.
- The lecture notes are, in fact, a selection of topics from the book J. Matousek: Lectures on Discrete Geometry.
- A text for the part about incremental geometric algorithms is available
here
(12 pages).
- Chan's algorithm for the construction of the convex hull: doi:10.1007/BF02712873
- A standard introductory text about computational geometry:
M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf: Computational
Geometry: Algorithms and Applications, Springer-Verlag, Berlin, 1997.
The computer science library of MFF UK has a few copies.
-
J. Pach, P. Agarwal: Combinatorial Geometry, Cambridge University Press
1995
Literatura
-
Skripta Jiriho Matouska Introduction to Discrete Geometry
vysla v ITI Seriich (preprintova rada Institutu teoreticke informatiky MFF UK)
pod cislem 2003-150 a je k dispozici v informaticke knihovne MFF UK.
Tady jsou take jako
postscriptovy soubor, v nemz jsou pro usporu mista 2 male
stranky na jedne strance A4. Je urcen hlavne pro dvoustranny tisk
a ma vlevo okraj na svazani. A
zde PDF soubor
mysleny pro ctecky a tablety.
- Predchozi text je ve skutecnosti vyber casti obvykle probiranych
v prednasce z knihy J. Matousek: Lectures on Discrete Geometry.
- Text k casti o inkrementalnich geometrickych
algoritmech je k dispozici
zde
(12 str).
- Chanuv algoritmus pro konstrukci konvexniho obalu: doi:10.1007/BF02712873
- Kapitola "Geometricke algoritmy" ve skriptech Martina Marese
- Standardni uvodni text o vypocetni geometrii je
M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf: Computational
Geometry: Algorithms and Applications, Springer-Verlag, Berlin, 1997.
Informaticke oddeleni knihovny ma nekolik exemplaru.
-
J. Pach, P. Agarwal: Combinatorial Geometry, Cambridge University Press
1995
Topics covered:
4.10. (JK)
- Introductory information
- Basic notions: d-dimensional Euclidean space R^d (the set of d-tuples of real numbers), hyperplane, closed halfspace
- Afinne subspace, afinne hull, afinne combination, afinne (in)dependence
- Convex set, convex hull, it is the set of all convex combinations (sketch of proof)
- Caratheodory's theorem (only statement, the proof is an exercise)
- Hyperplane separation theorem, sketch of proof for the case of two compact sets, idea for the case of bounded sets
11.10. (JK)
- Radon's theorem
- Helly's theorem
- Infinite version of Helly's theorem
- Existence of a centerpoint
- The ham sandwich theorem (only statement)
18.10. (JK)
- Center transversal theorem (only statement)
- Drawing of a graph, crossing number of a graph
- Crossing lemma
- Szemeredi–Trotter theorem about maximum number of incidences between points and lines
25.10. (JK)
- Lower bound on the number of incidences between n points and n lines
- Upper bound O(n^{4/3}) on the number of unit distances (only statement)
- Lower bound n^{1+c/(log log n)} on the number of unit distances (description of the construction, no proof)
- Minkowski's theorem for the integer lattice
- Application 1: looking out of a regular forest
- Application 2: Diophantine approximation of real numbers
- Lattice with basis z_1, z_2, ..., z_d, the determinant of a lattice
- Minkowski's theorem for general lattices (only statement)
1.11. (JK)
- An application of the general Minkowski's theorem in number theory: each prime number of the form 4k + 1 can be written as a sum of two squares.
- Geometric duality: duality transform D_0 between points (except 0) and hyperplanes avoiding the origin, dual set X*, duality transform D between points and nonvertical hyperplanes
- Convex polytopes: V-polytope, H-polyhedron, H-polytope, dimension of a polytope
- Basic examples: d-dimensional cube, crosspolytope and simplex
- Every V-polytope is a H-polytope (sketch of a proof using duality and reverse implication)
8.11. (MT)
- Every H-polytope is a V-polytope
- Face of a polytope P, facet, edge, vertex
- Extremal point of a set
- The extremal points of P are exactly its vertices, P is the convex hull of its vertices
- The vertices of a face F of P are exactly those vertices of P that lie in F
- The faces of a face F of P are exactly those faces of P that lie in F
- Graph of a polytope, the graph of a 3-dimensional polytope is planar
- Balinski's theorem (only statement)
- Steinitz's theorem (only statement)
- Face lattice of a polytope, meets and joins, combinatorial equivalence of polytopes
15.11. (MT)
- Further properties of the Face lattice of a polytope: graded, atomic and coatomic (sketched only)
- Remark on efficient representation of the face lattice in a computer
- Face lattice of the dual polytope is the inverse of the face lattice of the primal polyotp. In particular, j-faces of P correspond to (d-1-j)-faces of P*.
- Simplicial and simple polytope, examples, the terms are mutually dual
- f-vector of a polytope, bounds on the number of faces of a 3-polytope
- Moment curve, cyclic polytope, intersection of the moment curve with a hyperplane, Gale criterion describing facets of the cyclic polytope
- Number of faces of a polytope. Remark on Dehn-Sommerville equalities (without proof)
22.11. (MT)
- Exact number of facets of the cyclic d-polytope with n vertices
- Upper bound theorem (withou proof)
- Asymptotic upper bound theorem (with proof), simplicialni polytopes first, then all.
- Region of a point and Voronoi diagram.
- Examples of applications of Voronoi diagrams: closest post office, interpolation of functions.
- Unit paraboloid and a lemma on its tangent hyperplanes.
29.11. (MT)
- Upper bound on complexity of a Voronoi diagram (via projection from certain polyhedron)
- Arrangements of hyperplanes in R^d, number of vertices and cells in a simple arrangement of hyperplanes
- Arrangements of more general geometric objects including zero sets of polynomials. Sign patterns of a set of polynomials.
6.12. (MT)
- Milnor–Thom theorem (no proof)
- Arrangement of pseudolines, wiring diagram, representation via permutations, equivalent arrangements
- Stretchability of pseudoline arrangements, example of non-stretchable arrangement (non-simple one)
- Asymptotic number (lower bound) of pseudoline arrangements, assymptotic number (upper bound) of line arrangements via Milnor-Thom. Consequence: there are many non-stretchable arrangements
- Level of a vertex in a simple arrangement of hyperplanes.
- Clarkson's theorem on level sets.
- Sketch that this is tight. Proof in dimension 2 only via probabilistic technique.
13.12. (MT)
- The zone theorem, proof for simple arrangements in dimension 2.
- In general dimension: only counting the number of facets and (d-1)-faces (for simple arrangements).
20.12. (JK)
- Algorithm for a construction of the arrangement of n lines in the plane: straightforward with running time O(n^2 log n), incremental with running time O(n^2)
- Incremental algorithm for the convex hull of n points in the plane with running time O(n log n)
- Chan's output-sensitive algorithm for the convex hull with running time O(n log h) where h is the number of vertices of the convex hull
12. 1. (MT)
- The point localization problem and determining a segment above a query point.
- The trapezoidal decomposition of a set of segments. A suitable data structure for it.
- Localization of a query point in this data structure takes expected O(log n) time.
- It takes expected O(n log n) time to build this structure and the expected storage is O(n).
Temata prednasek:
4.10. (JK)
- Uvodni informace
- Zakladni pojmy: d-rozmerny euklidovsky prostor R^d (mnozina usporadanych d-tic realnych cisel), nadrovina, uzavreny poloprostor
- Afinni podprostor, afinni obal, afinni kombinace, afinni (ne)zavislost
- Konvexni mnozina, konvexni obal, je roven mnozine vsech konvexnich kombinaci (naznak dukazu)
- Caratheodoryho veta (jen zneni, dukaz je jako cviceni)
- Veta o oddelovani nadrovinou, naznak dukazu, ze disjunktni kompaktni konvexni mnoziny lze ostre oddelit, myslenka pro pripad omezenych mnozin
11.10. (JK)
- Radonova veta
- Hellyho veta
- Nekonecna verze Hellyho vety
- Veta o centru
- Veta o sendvici (jen zneni)
18.10. (JK)
- Center transversal theorem (jen zneni)
- Nakresleni grafu, prusecikove cislo grafu
- Prusecikove lemma
- Szemerediova–Trotterova veta o maximalnim poctu incidenci bodu a primek
25.10. (JK)
- Dolni odhad na pocet incidenci n bodu a n primek
- Horni odhad O(n^{4/3}) na pocet jednotkovych vzdalenosti (jen zneni)
- Dolni odhad n^{1+c/(log log n)} na pocet jednotkovych vzdalenosti (popis konstrukce, bez dukazu)
- Minkowskeho veta pro celociselnou mrizku
- Aplikace 1: vyhlizeni z pravidelneho lesika
- Aplikace 2: diofanticka aproximace realnych cisel
- Obecna mrizka s bazi z_1, z_2, ..., z_d, determinant mrizky
- Minkowskeho veta pro obecnou mrizku (jen zneni)
1.11. (JK)
- Aplikace obecne Minkowskeho vety: kazde prvocislo tvaru 4k+1 je souctem dvou ctvercu
- Geometricka dualita: D_0 mezi body (krome 0) a nadrovinami neobsahujicimi pocatek, dualni mnozina X*, dualita mezi body a nesvislymi nadrovinami
- Konvexni mnohosteny: V-mnohosten, H-mnohosten, H-polytop, dimenze mnohostenu
- Zakladni priklady: d-rozmerna krychle, d-rozmerny krizovy mnohosten, simplex
- Kazdy V-mnohosten je H-mnohostenem (naznak dukazu s pouzitim duality a obracene implikace)
8.11. (MT)
- Kazdy (omezeny) H-mnohosten je V-mnohostenem
- Stena mnohostenu, faceta, hrana, vrchol
- Extremalni bod mnoziny
- Extremalni body mnohostenu P jsou presne jeho vrcholy, P je konvexni obal svych vrcholu
- Vrcholy steny F mnohostenu P jsou presne ty vrcholy P lezici v F
- Steny steny F mnohostenu P jsou presne ty steny P lezici v F
- Graf mnohostenu, graf 3-rozmerneho mnohostenu je rovinny
- Balinskeho veta (bez dukazu)
- Steinitzova veta (bez dukazu)
- Svaz sten mnohostenu: definice + prusek a spojeni, kombinatoricka ekvivalence mnohostenu
15.11. (MT)
- Svaz sten mnohostenu, dalsi vlastnosti: je gradovany, atomicky a koatomicky (pouze naznakem)
- Poznamka o efektivni reprezentaci svazu sten v pocitaci
- Svaz sten dualniho mnohostenu je "prevracenim" svazu sten puvodniho mnohostenu a j-rozmermne steny P odpovidaji (d-1-j)-rozmernym stenam P* (bez dukazu)
- Simplicialni mnohosten, jednoduchy mnohosten, priklady, pojmy jsou navzajem dualni
- f-vektor mnohostenu, odhady na pocty sten 3-rozmerneho mnohostenu
- Momentova krivka, cyklicky mnohosten, prunik momentove krivky s nadrovinou, Galeovo kriterium charakterizujici facety cyklickeho mnohostenu
- Pocet sten cyklickeho mnohostenu. Poznamka o Dehn-Sommervilleovych rovnostech (bez dk., pouze orientacne).
22.11. (MT)
- Presny pocet facet d-rozmerneho cyklickeho mnohostenu s n vrcholy
- Upper bound theorem (bez dukazu)
- Asymptoticka upper bound theorem (s dukazem), nejprve simplicialni mnohosteny, potom vsechny.
- Region bodu a Voroneho diagram.
- Motivace pro Voroneho diagramy: nejblizsi posta, interpolace funkci.
- Jednotkovy paraboloid a lemma o jeho tecnych nadrovinach.
29.11. (MT)
- Horni odhad slozitosti Vor. diagramu (pomoci projekce jisteho poledru)
- Arrangementy nadrovin v R^d, pocet vrcholu a bunek jednoducheho arrangementu n nadrovin v R^d
- Arrangmenty obecnejsich geometrickych objektu a specialne nulovych mnozin polynomu. Znamenkovy vzor mnoziny polynomu.
6.12. (MT)
- Milnor–Thomova veta (bez dukazu)
- Arrangementy pseudoprimek, wiring diagram, reprezentace pomoci permutaci, ekvivalentni arrangementy
- Narovnatelnost arrangementu pseudoprimek, priklad nenarovnatelneho arrangementu pseudoprimek (nejednoducheho)
- Asymptoticky odhad (dolni mez) na pocet arrangementu pseudoprimek, horni mez na pocet arrangmentu primek pomoci Milnor-Thomovy vety. Dusledek: je mnoho nenarovnatelnych arrangementu pseudoprimek.
- Hladina vrcholu v jednoduchem arrangementu primek.
- Clarksonova veta o hladinach.
- Priklad ze je tesna (naznak). Dukaz v dimenzi 2 pomoci pravdepodobnostniho pristupu.
13.12. MT
- Veta o zone, dukaz pro jednoduche arrangementy v dimenzi 2
- V obecne dimenzi: pouze pocet bunek a (d-1)-sten
20.12. (JK)
- Inkrementalni algoritmus pro konstrukci arrangementu n primek v rovine v case O(n^2) (a primocary bezici v case O(n^2 log n))
- Inkrementalni algoritmus na vypocet konvexniho obalu n bodu v rovine v case O(n log n)
- Chanuv "output-sensitive" algoritmus na vypocet konvexniho obalu n bodu v rovine v case O(n log h), kde h je pocet vrcholu konvexniho obalu
12. 1. (MT)
- Problém lokalizace bodu a určování úsečky nad dotazovaným bodem.
- Lichoběžníková dekompozice množiny úseček. Vhodná datová struktura pro ni.
- Lokalizace dotazovaného bodu v očekávaném čase O(log n).
- Konstrukce lichoběžníkové dekompozice v čase O(n log n) a prostoru O(n).