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1 Preface

A workshop in discrete and computational geometry was organized in the Czech

Republic again after several years. This time we decided to locate the workshop

outside of Prague, in Northern Bohemia. We were quite surprised since almost

everybody invited to the workshop really agreed to come. As a result, the number of

participants (27) was roughly twice as much as we had originally planed. But �nally

everything worked nicely, in our opinion, including the weather, the accommodation

in a newly renovated castle in Rynartice, and a one-day trip to the national park

Czech Switzerland, where no-one got lost in spite of a complicated plan involving

splitting and re-joining subgroups of participants.

The o�cial scienti�c programme consisted of 15 talks and a problem session.

We had the opportunity to listen to leading researchers in the �eld and to learn

about a recent progress in solving well-known geometric questions.

Photos and other information about the workshop can be found on http://

www.ms.mff.cuni.cz/acad/kam/valtr/rynartice/.

We would like to thank all the participants for their contribution to the nice

and productive atmosphere of the workshop. We thank Robert Babilon, Jakub

�

Cern�y, Helena Nyklov�a, Hana Poli�sensk�a, and Jan Vondr�ak for their help with

the organization of the workshop. The workshop was �nancially supported by the

Institute for Theoretical Computer Science (ITI, http://iti.mff.cuni.cz/).

Pavel Valtr and Ji�r�� Matou�sek
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2 Schedule of talks

TUE 9:10 - 10:00 G. Rote: Unfolding of polygons I

10:10 - 10:40 K. Kuperberg: Pach's animal problem

11:10 - 12:00 M. Sharir: Lenses and their descendants I

12:10 - 12:40 O. Cheong: The Voronoi Game

17:00 - 17:30 Cs. Toth: BSP for line segments with few distinct directions

17:35 - 18:05 W. Kuperberg: Ball packings in a cube, vertex-inscribed

regular simplices, and Hadamard matrices

18:15 - 18:45 M. Joswig: Projectivities, Colorings, and Branched Coverings

WED 9:10 - 10:00 G. Rote: Unfolding of polygons II

10:10 - 10:40 G. Toth: The string graph problem

11:10 - 12:00 M. Sharir: Lenses and their descendants II

12:10 - 12:40 V. Koltun: Almost Tight Upper Bounds

for Vertical Decompositions in Four Dimensions

20:00 - 21:00 Problem session

FRI 9:10 - 10:00 N. Linial: Recent progress in metrical embeddings I

10:10 - 10:40 N. Linial: Recent progress in metrical embeddings II

11:10 - 12:00 G. Tardos: Distances and distinct sums

12:10 - 12:40 Gy. Elekes: On the Number of Distinct Radii

17:00 - 17:30 F. Shahrokhi: Algorithms and Covering Theorems

For Pseudo-Transitive Graphs

With Geometric Applications

17:35 - 17:55 B. Aronov: Distinct distances in 3 dimensions

17:55 - 18:15 S. Har-Peled: A replacement for Voronoi diagrams

of near-linear size

18:20 - 18:50 T. Kaiser: Line transversals to unit discs

SAT 9:10 - 10:00 S. Felsner: Combinatorial Representations

of Arrangements of Pseudolines

11:10 - 12:00 U. Wagner: On the number of corner cuts

12:10 - 12:40 Gy. Karolyi: Erdos-Szekers theorem

with forbidden order types
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3 Abstracts

Distinct distances in 3 dimensions

Boris Aronov

We show that the number of distinct distances determined by any set of n points

in three dimensions is at least 
(n

245=453

=2

c�

2

(n)

) � n

0:5408

, for some absolute

constant c > 0, where �(n) is the inverse Ackermann's function. This improves

the best known bound, which is somewhat smaller than 
(n

1=2

). We also show

that there always exists a point p in the given set with 
(n

49=93

=2

c

0

�

2

(n)

) � n

0:526

distinct distances from p to the remaining points of the set, for another absolute

constant c

0

> 0.
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The Voronoi Game

Otfried Cheong

This talk was based on a joint work with Hee-Kap Ahn, Siu-Wing Cheng, Morde-

cai Golin and Ren�e van Oostrum

We consider a competitive facility location problem with two players. Players

alternate placing points, one at a time, into the playing arena, until each of them

has placed n points. The arena is then subdivided according to the nearest-neighbor

rule, and the player whose points control the larger area wins. We present a winning

strategy for the second player, where the arena is a circle or a line segment. We

also consider a variation where players can play more than one point at a time for

the circle arena.
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Combinatorial Representations of Arrangements of

Pseudolines and Applications

Stefan Felsner

We review several representations of arrangements of pseudolines and indicate

applications of these representations.

Allowable sequences: Ungar's solution to the slope problem

Enumeration of `at most k sets' in the plane.

Wiring diagrams: The edges of a sperical arrangement graphs can be colored red

and blue such that each color class is a Hamiltonian cycle.

A planarized bijection between simple allowable sequences and standard Young

tableaux of staircase shape.

Local 0,1 sequences: The number of combinatorially di�erent arrangements of

pseudolines is at most 2

cn

2

, with c < 0:7.

Zonotopal tilings: The complexity of the middle level is in O(n

3=2

).

Triangle orientations: The representation of arrangements by triangle orientations

induces an order structure on the set of all simple arrangements of n pseu-

dolines, this order is the higher Bruhat order B(n; 2). The cover relation in

B(n; 2) is the triangular ip. Application, e.g., in the generation of random

arrangements.
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A Replacement for Voronoi Diagrams of Near

Linear Size

Sariel Har-Peled

For a set P of n points in <

d

, we de�ne a new type of space decomposition.

The new diagram provides an �-approximation to the distance function associated

with the Voronoi diagram of P , while being of near linear size, for d � 2. This

contrasts with the standard Voronoi diagram that has 


�

n

dd=2e

�

complexity in the

worst case.
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Projectivities, Coloring, and Branched Coverings

Michael Joswig

Starting from a locally �nite pure simplicial complex satisfying a natural con-

nectivity property we give an elementary combinatorial construction of a branched

cover. Our main results show that this yields a rather complete description of the

topological phenomena arising in dimensions up to three.

The key tool for our investigation is the group of projectivities of a simplicial

complex. Originally devised for the study of certain coloring problems this group

turns out to encode quite a lot information on branched covers. This is similar

to the situation for unbranched coverings which are known to be described by the

fundamental group. A key step in the understanding of the coverings of a su�ciently

connected topological space is the construction of the universal cover, which is

characterized by the property that its fundamental group vanishes. Analogously, in

our context, we have the unfolding which is characterized by the property that its

group of projectivities is trivial.

Joint work with Ivan Izmestiev.
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Line transversals to unit disks

Tom�a�s Kaiser

Katchalski and Lewis proved in 1980 that if F is a �nite disjoint family of

translates of a compact convex set in the plane and if any 3 members of F a have

a line transversal, then there is a line meeting all but C of the sets, where C is a

constant. They proved the theorem with C = 192� and conjectured that in fact

C = 2 would su�ce. We discuss the case when F consists of unit disks, establishing

the result with C = 25.

(Update: Since the talk, I have succeeded in improving the value of C to 12,

mainly thanks to several helpful suggestions from the audience. A preprint of the

paper is available at http://home.zcu.cz/~kaisert/tx/line.ps.gz.)
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Erd}os{Szekeres Theorem with Forbidden Order

Types

Gyula K�arolyi

The classical Erd}os{Szekeres theorem states that for every integer n � 3 there is

an N

0

such that, among any set of N � N

0

points in general position in the plane,

there is the vertex set of a convex n-gon. Reversing the question one may ask, for

any n � 3, for the largest number f(n) such that any set of n points in general

position in the plane contains the vertex set of a convex f(n)-gon. It is known that

f(n) = �(logn).

The relation between the Erd}os{Szekeres problem and Ramsey's theorem has a wide

literature. From the viewpoint of Ramsey theory, the vertex set of a convex polygon

(which we will simply refer to as a convex polygon) can be called as a homogeneous

subset of the underlying set. The Erd}os{Szekeres theorem claims that no su�ciently

large set can avoid `large' homogeneous subsets. In classical graph-Ramsey theory,

homogeneous subsets of the vertex set of a graph are those sets which induce either

complete or empty subgraphs, that is, cliques and independent sets. According to

a conjecture of Erd}os and Hajnal, for every graph H there is a positive constant

" = "(H) such that every graph on n vertices which does not contain H as an

induced subgraph contains a large homogeneous set whose size is at least n

"

. This

conjecture is veri�ed only for certain classes of graphs, and such graphs are said

to possess the Erd}os{Hajnal property. In this talk we extend these notions in the

context of the Erd}os{Szekeres problem.

Throughout this paper we will always assume that every point set is in general

position in the plane, that is, no three points of the con�guration are collinear.

Two such con�gurations are said to be of the same order type if there is a one-to-

one correspondence between them which preserves the orientation of each triple.

Thus, order types are equivalence classes of con�gurations. We will say that the

con�guration P contains the order type T if there is a subset of P which belongs to

T . Ramsey theoretic aspects of order types have already been studied by Ne�set�ril

and Valtr.

Now let T be a �xed order type which is not in convex position, or more generally,

let T be an arbitrary family of such order types. De�ne, for n � 3, f

T

(n) as

the largest number such that any set of n points in general position in the plane,

which does not contain T , contains the vertex set of a convex f(n)-gon. Clearly

f

T

(n) � f(n), and f

T

is a monotone increasing function.

We say that T has the Erd}os{Hajnal property if there exists a positive constant ",

depending only on T , such that f(n) > n

"

. If in addition there exists a positive

constant c such that f

T

(n) > cn, then we say that T possesses the strong Erd}os{

Hajnal property. The aim of this talk is to study which order types admit the

strong Erd}os{Hajnal property, and to see if every order type has the Erd}os{Hajnal

property, a question raised also by Gil Kalai.

Let k � 3 and E = fa; b

1

; b

2

; : : : ; b

k

g be a con�guration such that b

1

b

2

: : : b

k

is a

convex k-gon inside the triangle ab

1

b

k

. Then E belongs to a unique order type that

we denote by E

k

. If, for example, T = E

3

, it is clear that f

T

(n) = n for every n � 3.

Theorem Let T be any order type whose convex hull is a triangle. T has the strong

Erd}os{Hajnal property if and only if T = E

k

for some integer k � 3.

Corollary If an order type T has the strong Erd}os{Hajnal property then for every

order type S � T whose convex hull is a triangle there is an integer k � 3 such that

S = E

k

.
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In fact, we give a somewhat stronger necessary condition and also show that f

S

(n) =

O(

p

n) holds for every order type S that does not satisfy this condition.

A class of order types which have the Erd}os{Hajnal property is what we call half-

moons. Let k; ` � 3 and F = fa

1

; a

2

; : : : ; a

`

; b

2

; : : : ; b

k�1

g be a con�guration

such that a

1

a

2

: : : a

`

is a convex `-gon containing b

2

; : : : ; b

k�1

and a

1

b

2

: : : b

k�1

a

`

is

a convex k-gon with lines a

1

b

2

and a

`

b

k�1

intersecting segments a

`

a

`�1

and a

1

a

2

,

respectively. In particular, fa

1

; a

i

; a

`

; b

2

; : : : ; b

k�1

g is of type E

k

for every 1 < i < `.

Then F belongs to a unique order type that we denote by F

k;`

. Thus, F

k;3

= E

k

.

Theorem Every order type F

k;`

(k; ` � 3) has the Erd}os{Hajnal property.

There are, however, order types which do not have the Erd}os{Hajnal property.

The following result indicates that the analogue of the Erd}os{Hajnal conjecture is

not true for order types in general. It may even be the case that f

T

= f for the

con�guration T in the following theorem.

Theorem There is an order type T such that f

T

(n) < logn + 2. More precisely,

for every integer n � 4 there is a con�guration of 2

n�2

points in general position in

the plane which contains neither T nor a convex n-gon.

Open Problem Characterize those con�gurations wich possess the strong Erd}os{

Hajnal property. In particular, does F

4;4

have this property?

This talk is based on a joint work with J�ozsef Solymosi.
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Almost Tight Upper Bounds for Vertical

Decompositions in Four Dimensions

Vladlen Koltun

We show that the complexity of the vertical decomposition of an arrangement of

n �xed-degree algebraic surfaces or surface patches in four dimensions is O(n

4+�

),

for any � > 0. This improves the best previously known upper bound for this

problem by a near-linear factor, and settles a major problem in the theory of ar-

rangements of surfaces, open since 1989. The new bound can be extended to higher

dimensions, yielding the bound O(n

2d�4+�

), for any � > 0, on the complexity of

vertical decompositions in dimensions d � 4. We also describe the immediate algo-

rithmic applications of these results, which include improved algorithms for point

location, range searching, ray shooting, robot motion planning, and some geometric

optimization problems.
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Pach's animal problem

Krystyna Kuperberg

An animal in R

n

is the union of lattice cubes homeomorphic to the n-ball. Two

animals are equivalent if one can be obtained from the other by a �nite sequence of

moves each consisting of either adding or removing a cube provided the result is an

animal at each move. It is known that any two animals in R

2

are equivalent and the

equivalence to a single square can be obtained by removing a square at each move.

J. Pach asked whether any two animals in R

3

are equivalent. The �rst example of

an animal in R

3

not equivalent to a single cube by only removing cubes was given

by J. O'Rourke, so it is necessary to enlarge the animal �rst in order to start to

remove cubes.

If A is an animal then the animal kA is de�ned as a homothetic copy of A by

a factor of k, i.e., consisting of k

d

unit cubes. Allowing the additional operation of

enlarging an animal by a factor of 3, any two animals in R

3

are equivalent in the

modi�ed sense. There is an algorithm reducing 3A to an animal \simpler" than A.

After �nitely many steps of enlarging the animal and applying the algorithm one

obtains a single cube.

Enlarging an animal A to obtain kA is a tedious procedure of adding identical

layers. Examples show that it can not be carried out using one direction at a time

parallel to an axis. It appears that an animal can be enlarged by \blowing it up"

in a direction of a corner of a large cube containing the animal. This algorithm has

not been fully described yet and it stands as a conjecture.
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Ball packings in a cube, vertex-inscribed regular

simplices, and Hadamard matrices (work joint

with Greg Kuperberg)

Wlodzimierz Kuperberg

The following �nite packing problem is considered: What is the maximum radius

of k congruent balls that can be packed in the n-dimensional unit cube? Most of

the known results in dimension 3 are due to J. Shaer (no solution is known for

n = 3 and k > 10). In dimensions greater than 3 exact results are few and far

between (some solved cases in dimensions n = 4 and n = 5 will be presented).

S.S. Ryshkov (et al) solved the problem for k = 3 and all n; also they noticed

a connection with Hadamard matrices: if there exists a Hadamard matrix of size

n+1, then there is a regular n-simplex vertex-inscribed in, and concentric with, the

n-cube, and then the solution of the packing problem for k = n + 1 presents itself

readily. Generalizing their observation, we consider the problem of existence of a

d-dimensional regular simplex vertex-inscribed in, and concentric with, the n-cube.

The necessary conditions for its existence are that d � 3 (mod 4) and n is a multiple

of d (the Hadamard case), or d � 1 (mod 4) and n is an even multiple of d. This

problem is equivalent to the problem of existence of certain resolvable cominatorial

designs, that include the Hadamard designs. We show that for every odd d the

cube of dimension

1

2

�

d+1

d+1

2

�

contains a concentric, vertex-inscribed d-simplex, and if

a Hadamard matrix of size 2d+2 exists, then the 2d-cube contains such a simplex.

Hence, a con�rmation of the Hadamard matrix conjecture would provide a complete

solution to the problem of centrally inscribing a regular d-simplex in the n-cube.
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Recent advances in metrical embeddings

Nati Linial

Finite metric spaces have been the focus of intensive research in recent years. They

turn out to have interesting implications in combinatorics, in the theory of algo-

rithms and in various sub�elds of geometry. In this talk I gave a general overview of

the present state of the �eld. Finally I mentioned the following recent result (joint

with Magen and Naor): Let G be a k-regular graph k > 2 and girth g. Then every

embedding of G into Euclidean space has distortion 
(

p

g).
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Unfolding of polygons

G�uenter Rote

Every planar polygon can be continuously deformed into convex position, with-

out self-intersections, if the vertices and edges are considered as movable joints

connected by �xed-length bars. Moreover, distances between vertices never de-

crease during this motion. This result was recently obtained together with Bob

Connelly and Erik Demaine. The proof is not deep in itself but involves a sequence

of reductions. In particular, it draws on results and concepts from rigidity theory,

which I introduce and prove: duality between motions and self-stresses of frame-

works, and the Maxwell-Cremona correspondence between planar self-stresses and

three-dimensional polyhedral terrains. I also describe an alternative approach due

to Ileana Streinu, that is more algorithmic in nature and involves so-called pseudo-

triangulations of planar point sets, which are interesting in their own right.
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Algorithms and Covering Theorems For

Pseudo-Transitive Graphs With Geometric

Applications

Farhad Shahrokhi

(This research was supported by NSF grant CCR-9988525.)

A directed acyclic graph G = (V;E) n = jV j and m = jEj, is pseudo-transitive

with respect to a given subset of edgesE

1

, if ab 2 E

1

and bc 2 E implies that ac 2 E.

When G = (V;E) is pseudo-transitive with respect to E

1

, we write G = (V;E

1

; E).

It is easy to see that the complement of the intersection graph of any �nite set of

bounded and closed subsets of R

k

has an orientation which is pseudo-transitive. In

this the edge set E

1

is induced by the separability properties with respect to a class

of hyperplanes.

Let G = (V;E

1

; E) be pseudo-transitive, and let G

2

= (V;E

2

), where E

2

=

E � E

1

. We give two exact algorithms for computing longest chains in pseudo

transitive graphs. The �rst algorithm computes a longest chain of any pseudo-

transitive graph G, in O(n

!

2

+1

m) time, where !

2

is the length of a longest chain

in the graph G

2

= (V;E

2

). This algorithms can be applied to di�erent classes of

map labeling problems, and its time complexity is better than the square root of

the previous algorithms. When E

1

, and E

2

= E � E

1

are partial orders on V , we

present a second algorithm that computes a longest chain of G in O(

P

x2V

deg

2

(x)),

time where deg(x) is the degree of x.

We also derive approximate chain-antichain covering results in certain classes of

pseudo-transitive graphs. The results imply that the gaps between the chromatic

numbers and the largest clique sizes, and the gaps between the clique cover numbers

and the independence numbers, are small, in many intersection graphs whose under-

lying vertices are the closed and bounded sets in R

k

. In particular, for many classes

of intersection graphs of subsets of R

2

, � = O(� log(L)), and � = O(!: log(L)),

where � and � denote chromatic number and clique cover number, and � and !

denote the sizes of a largest independent set, and a largest clique, and L is a param-

eter whose value is smaller or equal to � and depends on the sizes and shapes of the

subsets. Our general results also imply that gaps between the traversal numbers

and largest independent sets of some of the interesting classes of subsets of R

2

are

small.
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Lenses and Their Descendants

Micha Sharir

We present recent progress in the study of incidences between points and circles

in the plane, and many related problems. The main improved bound for the number

of incidences between m points and n general circles in the plane, due to Aronov

and Sharir, is

O(m

2=3

n

2=3

+m

6=11+3�

n

9=11��

+m+ n);

for any � > 0.

The �rst step towards obtaining this bound is to cut the circles into pseudoseg-

ments, and then apply Sz�ekely's technique for the incidence bound. Aronov and

Sharir show that O(n

3=2+�

) cuts su�ce to cut the circles into pseudosegments.

These cuts eliminate lenses|a pair of arcs of di�erent circles that have common

endpoints.

A considerable portion of the new research deals with lenses. In the case of

pairwise-intersecting pseudocircles, an ingenious construction of Pinchasi shows that

the number of empty lenses (lenses not crossed by any other curve) is linear. Many

other results involving lenses in such arrangements have been obtained. (A paper

by Agarwal et al., in preparation, summarizes these results.)

We also present several related results:

� An e�ective and e�cient duality transform between points and pseudolines,

which has several algorithmic applications. (Work by Agarwal and Sharir and

by Smorodinsky and Sharir.)

� Improved bounds for the complexity of many faces in arrangements of circles.

(Work by Agarwal, Aronov and Sharir.)

� A new lower bound on the number of distinct distances in three dimensions.

(Aronov and Sharir)

� New bounds for incidences between points and lines or circles in three dimen-

sions. (Work by Sharir and Welzl, and by Aronov, Koltun and Sharir.)
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Distinct sums and distinct distances

G�abor Tardos

The talk started with a short overview of the result of J. Solymosi and Cs. Toth

on the Erdos problem of �nding the minimal number of distinct distances n points

can determine in the plain. We then destilled the following combinatorial problem:

For n pairwise disjoint s element sets of reals, what is the minimum number of

distinct sums we can form by adding two distinct numbers of the same set. A lower

bound for this latter problem of 
(n

1=e��

) was presented yielding a lower bound of


(n

4e=(5e�1)��

) for the original Erdos problem.
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BSP with few distinct directions

Csaba T�oth

We consider binary space partitions (BSP) for n disjoint line segments in the

plane. It is known that there is a BSP of size at most O(n logn), in general, and

the smallest BSP can be as big as 
(n logn= log logn) in the worst case. It is shown

that there exists a BSP of size O(kn) if the line segments have at most k di�erent

orientations. No linear upper bound was known, so far, for any �xed k > 2.

It is shown that there is an autopartition such that each line segment is cut at

most O(k) times. The key tools of the proof are cycles and convex cycles de�ned

on line segments touching the convex hull.
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String representations of graphs

G�eza T�oth

A graph is called a string graph if its vertices can be represented by continuous

curves (\strings") in the plane so that two of them cross each other if and only if

the corresponding vertices are adjacent.

It was shown by Kratochv��l that the problem of recognizing string graphs is

NP-hard. Ten years ago Kratochv��l and Matou�sek exhibited a string graph G on

n vertices such that in every representation of G there are at least 2

cn

crossings.

They raised the question whether it is decidable that a graph is a string graph.

We answer this question in the a�rmative by �nding a a recursive function f(n)

with the property that every string graph has a representation with at most f(n)

crossings. We will also discuss some related problems on crossing numbers. (Joint

work with J�anos Pach.)
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On the Number of Corner Cuts

Uli Wagner

A corner cut in dimension d is a �nite subset T of N

d

0

that can be separated

from its complement by an a�ne hyperplane disjoint from N

d

0

. Corner cuts were

�rst investigated by Onn and Sturmfels [2]. Their motivation stems from compu-

tational commutative algebra; for instance, they show that if I � K[x

1

; : : : ; x

d

] is

the vanishing ideal of a generic con�guration of k points in K

d

, K any in�nite �eld,

then the corner cuts of �xed size k in dimension d are in one-to-one correspondence

with the (reduced) Gr�obner bases of I .

Let us write c

d

(k) for the number of corner cuts of cardinality k in d dimensions.

Apart from the above-mentioned relations to algebraic geometry, estimating the

number c

d

(k) of such corner cuts seems to be of interest in its own right, since it is

a rather natural special instance of the k-set problem, which concerns the maximal

possible number of k-element subsets T of a set S of n points in R

d

such that T can

be separated from S n T by a hyperplane (see [4] or [3] for recent developments).

Onn and Sturmfels give an upper bound of O(k

2d

d�1

d+1

) for c

d

(k) when d is �xed.

Moreover, in the planar case, it is known (see [1]) that c

2

(k) = �(k log k). We

show

1

that in general, for any �xed dimension d, the order of magnitude of c

d

(k)

is between k

d�1

log k and (k log k)

d�1

. In fact, the corner cuts of size k correspond

to the vertices of a certain polyhedron P

d

k

� R

d

, and our proof of the upper bound

immediately extends to the overall number of ags (i.e., ascending chains F

1

(

: : : ( F

s

of faces) of that polyhedron.
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It has been communicated to me that the same bounds have been found independently by

Ga�el R�emond.
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4 Open problems

Does the Dual Graph of a Cubical Polytope

Determine its Combinatorial Type?

Michael Joswig

In general, it may happen that many convex polytopes with distinct combinato-

rial types (and even distinct dimensions) have isomorphic vertex-edge graphs. The

most prominent examples are the cyclic polytopes in dimensions 4 and above on

n vertices, which all have the complete graph K

n

as their graph. At the same time

this is also the graph of the (n � 1)-dimensional simplex. Observe that the cyclic

polytopes are simplicial, that is, each proper face is a simplex.

However, there are special classes of polytopes for which it is known that the

graph does determine the combinatorial type. In particular, this is true for simple

polytopes (that is, the duals of simplicial polytopes)by a theorem of Blind and

Mani [3]. A very short and elegant proof of Kalai [6] links this result to central

aspects of the combinatorics of simple polytopes.

A polytope is called cubical if each proper face is combinatorially equivalent to

a cube. They are somewhat similar to simplicial polytopes in the following sense.

Simpliciality for polytopes requires that the vertices on each facet are in general

position. Now, cubicality also encodes general position phenomena: A hyperplane

arragement is in general position if and only if its associated zonotope is cubical.

Moreoever, on a di�erent account, (the boundary of) a cubical d-polytope, or more

generally, a cubical (d�1)-sphere, gives rise to a normal crossing immersion of some

(not necessarily connected) hypersurface into the (d� 1)-sphere.

As for simplicial polytopes there is no hope for cubical polytopes to be de-

termined by their graphs. For instance, there are cubical analogues to the cyclic

polytopes [5]. But, as simplicial polytopes are determined by their dual graphs

(which are precisely the graphs of simple polytopes), this raises the question asked

in the title.

The vertex �gure of a polytope which is dual to a cubical d-polytope is always

a (d � 1)-dimensional cross polytope. Note that in a simple polytope each vertex

�gure is a simplex. One can analyze Kalai's proof of the Blind-and-Mani-Theorem

in order to extract what can be applied to other classes of polytopes [4]. This yields

that, in order to reconstruct a cubical polytope from its dual graph, it su�ces to

�nd the pairs of opposite vertices in all the cross polytopes arising as the dual vertex

�gures.

It is known [4] that for the very restricted class of stacked cubical polytopes the

dual graph does, in fact, determine the combinatorial type. Moreover, by a result

of Babson, Finschi, and Fukuda [1], the cubical zonotopes are determined by their

dual graphs.

In addition to the results mentioned above Bj�orner, Edelmann, and Ziegler [2]

prove that the graph of an arbitrary zonotope also determines the combinatorial

type of the zonotope. But, their proof employs entirely di�erent techniques. As it

seems the result on zonotopes does not �t into the context set by the Blind-and-

Mani-Theorem.
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Drawings of Q

n

Pavel Valtr

Is it possible to draw the graph of the n-dimensional cube Q

n

(having 2

n

vertices

and n2

n�1

edges) in the plane so that vertices are represented by points and edges

by segments (resp. by Jordan curves) so that there are no 100 (say) pairwise crossing

edges? (Two edges meeting in a vertex are not considered as crossing edges.) This

is trivially true for small values of n but the question is to �nd the drawing for

any n. For large n, Q

n

is not planar and therefore we cannot replace 100 by 2. It

is also known that we cannot replace 100 by 3 (this follows from a result of [P.K.

Agarwal, B. Aronov, J. Pach, R. Pollack, M. Sharir: Quasi-planar graphs have a

linear number of edges, Combinatorica 17 (1997), no. 1, 1{9]).

On the other hand, it is known that every drawing of a graph with n vertices and

at least c

k

n logn edges has k pairwise crossing edges. The graph Q

n

is a candidate

to show that the bound c

k

n logn cannot be improved (up to the value of c

k

), which

motivates the above problem.
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