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Mykhaylo Tyomkyn

Lecture 9 - The laws of large numbers and the Central limit theorem.

Let X1, X2, . . . be a sequence of independent, identically distributed L1 random variables on some

probability space. What can one say about the sequence (Sn)
∞
n=1, where Sn = (X1 + · · · + Xn)/n?

Since Sn measures the ‘empirical average’ of X1, . . . , Xn, one might suspect that in some sense Sn

converges to µ = E(Xi). This is indeed the case, but how do you prove or even state it formally, i.e.,

what does it mean for a sequence of random variables to ‘converge’? As it happens, there are multiple

ways of formally defining convergence of random variables and we will introduce three of them. Here

is the first.

Definition 1 (Convergence “in probability”) Let X and X1, X2, . . . be random variables on the

same probability space (Ω,F ,P). We say that the sequence (Xn)
∞
n=1 converges in probability to X, in

notation Xn
P−→ X, if for all ϵ > 0 we have1

lim
n→∞

P(|Xn −X| ≤ ϵ) = 1.

With this notion we can formalize our intuition about Sn. To simplify the proof we additionally

assume that the Xi have finite variances.

Theorem 1 (Weak law of large numbers (WLLN), L2-version) Let X1, X2, . . . be independent,

identically distributed L2(Ω,F ,P) random variables with E(Xi) = µ. Let Sn = (X1 + · · · + Xn)/n.

Then

Sn
P−→ µ.

In other words, the sequence (Sn)
∞
n=1 converges in probability to the constant random variable, taking

value µ always.

Proof Let σ2 be the variance of each Xi. We have

E(Sn) =
1

n

n∑
i=1

E(Xi) =
nµ

n
= µ,

and due to independence,

V ar(Sn) =
1

n2

n∑
i=1

Var(Xi) =
nσ2

n2
=

σ2

n
.

Fix some ϵ > 0. Applying Chebyshev’s inequality we obtain

P(|Sn − µ| ≥ ϵ) ≤ V ar(Sn)

ϵ2
=

σ2

nϵ2
,

1Equivalent versions: limn→∞ P(|Xn −X| < ϵ) = 1, limn→∞ P(|Xn −X| ≥ ϵ) = 0, limn→∞ P(|Xn −X| > ϵ) = 0.
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which converges to 0 as n → ∞ (since σ and ϵ are fixed). So, indeed Sn
P−→ µ. 2

The above proof already works when the Xi are pairwise uncorrelated. In general, WLLN has many

versions. For instance, it holds when the Xi are independent but merely in L1. This, of course, would

require a different proof.

Let us now introduce a second form of convergence of random variables.

Definition 2 (Convergence “almost surely”) Let X and X1, X2, . . . be random variables on the

same probability space (Ω,F ,P). We say that the sequence (Xn)
∞
n=1 converges almost surely to X, in

notation Xn
a.s.−→ X, if

P( lim
n→∞

Xn = X) = 1.

This notion of convergence is strictly stronger than Xn
P−→ X.

Exercise 1 (harder)

� Show that if F is a σ-algebra then {limn→∞Xn = X} is an event.

� Prove that Xn
a.s.−→ X implies Xn

P−→ X.

Example 1 (A sequence convergent in probability but not a.s.) Let Ω = [0, 1], F = L and

P = Unif [0, 1]. Let X = 0, and let

X1 = 1[0,1]

X2 = 1[0, 1
2
], X3 = 1[ 1

2
,1],

X4 = 1[0, 1
4
], X5 = 1[ 1

4
, 2
4
], X6 = 1[ 2

4
, 3
4
], X7 = 1[ 3

4
,1],

X8 = 1[0, 1
8
], X9 = 1[ 1

8
, 2
8
], X10 = . . .

Then Xn
P−→ X, but not Xn

a.s.−→ X (in fact, Xn(ω) does not converge to X(ω) for any ω ∈ Ω).

We will now state (without proof) the strong law of large numbers.

Theorem 2 (Strong law of large numbers (SLLN)) Let X1, X2, . . . be independent, identically

distributed L1(Ω,F ,P) random variables with E(Xi) = µ. Let Sn = (X1 + · · ·+Xn)/n. Then

Sn
a.s.−→ µ.

The subtle difference between WLLN and SLLN can be better visualized, say when Xi ∼ Bern(1/2),

using the infinite ‘tree of outcomes’ of the coin tosses. WLLN is a statement about the ‘levels’ of the

tree, while SLLN is a statement about the ‘branches’. Let us now look at two applications of the laws

of large numbers.

Example 2 (Monte Carlo volume computation) Suppose we are given a k-dimensional compact

‘body’ D ⊆ [0, 1]k, typically defined by a system of algebraic inequalities. We want to (approximately)

compute the volume of D. We use the Monte Carlo method: create many points x1, x2 . . . xn in [0, 1]k

uniformly at random, independently, and for each i check whether xi ∈ D (checking is cheap: just plug
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the coordinates of xi into the inequalities defining D). Let Xi = 1 if xi ∈ D and Xi = 0 otherwise.

Then X1, . . . , Xn are iid2 random variables with Xi ∼ Bern(vol(D)). So, by the laws of large numbers,

Sn = (X1 + · · · + Xn)/n is a good estimate for E(Xi) = vol(D). How good exactly is a question of

Statistics.

Example 3 (“Normal” numbers) A real number x ∈ [0, 1] is called normal if in its decimal rep-

resentation x =
∑

i≥1 xi10
−i any sequence of digits a = (a1, . . . , ak) ∈ {0, . . . , 9}k appears in x consec-

utively with frequency 10−k. In other words

lim
n→∞

1

n

n∑
i=1

1{(xi...,xi+k−1)=a} = 10−k.

Then SLLN implies that X ∼ Unif [0, 1] is normal a.s. (to see this, apply SLLN to every possible finite

sequence a, and take the countable intersection of probability 1 events). In other words ‘almost all’

numbers are normal. By the same argument (applied a countable number of times), X ∼ Unif [0, 1] is

a.s. absolutely normal, that is normal in every expansion base q ∈ {2, 3, . . . } (q = 10: normal). So,

almost all numbers are absolutely normal, but in practice absolutely normal numbers are very hard to

construct (e.g., rational numbers are not normal, as they are periodic). It is conjectured that e, π,
√
2

are absolutely normal, but this is open.

Let us now introduce a third type of convergence of random variables, the weakest of the three but at

the same time probably the most important one.

Definition 3 (Weak convergence) A sequence X1, X2, . . . of random variables (not necessarily de-

fined on the same probability space) with respective cdf ’s F1, F2, . . . converges in distribution / weakly

/in law to a random variable X with cdf F , if

lim
n→∞

Fn(x) = F (x) for every x ∈ R at which F is continuous.3

We write Xn
L−→ X.

Exercise 2 Prove that Xn
P−→ X implies Xn

L−→ X.

The reverse implication, as a statement, would only make sense if all Xi and X were defined on the

same probability space. But even then, the implication would not hold.

Example 4 Let X ∼ Bern(1/2) and Y = 1 − X. Then Y is also Bern(1/2)-distributed, so FX =

FY . Consider now the sequence X,Y,X, Y,X, Y, . . . . It converges to X in distribution, since all the

distributions are identical, but not in probability since |Y −X| = 1 always.

The following theorem is arguably the most important theorem in Probability theory and Statistics,

both in theoretical and practical terms. It underlines the importance of the normal distribution. We

do not have time or mean to prove it, but I will try to give a motivation.

2Independent, identically distributed
3In most practical applications F will be continuous everywhere.
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Theorem 3 (Central limit theorem (CLT)) Let X1, X2, . . . be a sequence of iid4 L2(Ω,F ,P) ran-
dom variables with E(Xi) = µ and Var(Xi) = σ2 > 0. Then for the sequence (S∗

n)
∞
n=1, where

S∗
n =

1√
n

n∑
i=1

Xi − µ

σ

we have

S∗
n

L−→ N (0, 1).

The crucial term in CLT is the
√
n in the denominator. Suppose for simplicity that µ = 0 and σ = 1.

Then by (the weakest form of) LLN

1

n

n∑
i=1

Xi
L−→ 0,

while by CLT

1√
n

n∑
i=1

Xi
L−→ N (0, 1),

which is not a contradiction. In the second case we simply use a larger ‘magnification ratio’.

What is the intuition behind
√
n? Let us supposeXi ∼ Bern(1/2), soX1+· · ·+Xn = X ∼ Bin(n, 1/2).

The pmf pX(k) = 2−n
(
n
k

)
is maximized at k = n/2 (assuming for simplicity that n is even), and by

Stirling’s formula5 we have

2−n/2

(
n

n/2

)
≈ 1

c
√
n
,

for some (unimportant) constant c > 0. Using this fact one can show that the sum of o(
√
n) values

of pX centred at k = n/2 is o(1), while the sum of ω(
√
n) such values is 1− o(1). With more care for

the constants (notice the
√
π term in both Stirling and N (0, 1)), this is how CLT can be proved for

Xi ∼ Bern(1/2). But the astonishing fact is that CLT holds for any distribution of Xi ∈ L2.

Example 5 Let us revisit the example from Lecture 8, where we tossed a fair coin 100 times and

asked for the probability to get at least 60 ‘heads’. Chebyshev’s inequality gave an upper bound of

12.5%. Applying CLT (“the normal approximation”) with Xi ∼ Bern(1/2), µ = E(Xi) = 1/2 and

σ = σ(Xi) = 1/2 gives

P

(
100∑
i=1

Xi ≥ 60

)
= P

(
100∑
i=1

(Xi − µ) ≥ 10

)
= P

(
1√
100

100∑
i=1

Xi − µ

σ
≥ 2

)
≈ 1− Φ(2) ≈ 2.5%.

Here Φ(x) stands (and is a common abbreviation) for the cdf of the N (0, 1) distribution. It does not

have a closed form using elementary functions and avoiding integrals, but is well-understood numeri-

cally and can, for example, be looked up in so-called normal tables.

A good rule of thumb to remember: the probability for B(n, 1/2) to be within 2 standard deviations

from its mean is ca. 95%. Note that the scaling with n is not linear: if we toss the coin 10000 times

instead then with probability ca. 95% we will get between 4900 and 5100 heads. It is remarkable

how tightly the binomial distribution (and more generally any distribution arising as a sum of iid

L2-variables) is concentrated around its mean.
4Independent, identically distributed
5n! = (1 + o(1))

√
2πn(n

e
)n
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