NMAI059 – Probability and Statistics 1

Mykhaylo Tyomkyn

Lecture 8 - Random variables: odds and ends.

Definition 1 (Covariance) Let $X, Y: (\Omega, \mathcal{F}, \mathbb{P}) \to \mathbb{R}$ be either both discrete, or both (jointly) continuous. The covariance of X and Y, denoted Cov(X, Y) is defined (subject to convergence) as

$$Cov(X,Y) = \mathbb{E}((X - \mathbb{E}(X)(Y - \mathbb{E}(Y))).$$

Note that Cov(X, X) = Var(X).

Lemma 1 $Cov(X, Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y).$

Proof Using linearity of expectation,

$$Cov(X,Y) = \mathbb{E}((X - \mathbb{E}(X)(Y - \mathbb{E}(Y))) = \mathbb{E}(XY - \mathbb{E}(X)Y - \mathbb{E}(Y)X + \mathbb{E}(X)\mathbb{E}(Y))$$
$$= \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y) - \mathbb{E}(X)\mathbb{E}(Y) + \mathbb{E}(X)\mathbb{E}(Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y).$$

Note that the covariance operator is symmetric, i.e., Cov(X, Y) = Cov(Y, X) and using Lemma 1 one can see that it is also bilinear: Cov(X, Y + Z) = Cov(X, Y) + Cov(X, Z).

If Cov(X, Y) = 0, that is when $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$, we say that X and Y are *uncorrelated*. This is the case when X and Y are independent, but in general uncorrelated random variables need not be independent¹, as we saw in Lecture 7. We say that X and Y are *positively/negatively correlated* if Cov(X, Y) > 0 and if Cov(X, Y) < 0, respectively.

Theorem 1 (Probabilistic Cauchy-Schwarz inequality) Let $X, Y \in L^2(\Omega, \mathcal{F}, \mathbb{P})$. Then $XY \in L^1(\Omega, \mathcal{F}, \mathbb{P})$, and

$$\mathbb{E}(XY)^2 \le \mathbb{E}(X^2)\mathbb{E}(Y^2).$$

Proof Given X and Y, let $f \colon \mathbb{R} \to \mathbb{R}$ be the real function defined as

$$f(t) = \mathbb{E}((tX+Y)^2).$$

By linearity of expectation we can write it as

$$f(t) = \mathbb{E}(t^2X^2 + 2tXY + Y^2) = t^2\mathbb{E}(X^2) + 2t\mathbb{E}(XY) + \mathbb{E}(Y^2) = :at^2 + bt + c,$$

¹Intuitively, the covariance indicates how likely both variables will be simultaneously above or below their respective expectations.

where we set $a = \mathbb{E}(X^2)$, $b = 2\mathbb{E}(XY)$ and $c = \mathbb{E}(Y^2)$. Observe now that $(tX + Y)^2 \ge 0$ always, and therefore,

$$0 \le \mathbb{E}((tX+Y)^2) = f(t),$$

for all values of t. So, the quadratic function $at^2 + bt + c$, takes only non-negative values, meaning its discriminant must be non-positive: $b^2 \leq 4ac$. This translates to

$$4\mathbb{E}(XY)^2 \le 4\mathbb{E}(X^2)\mathbb{E}(Y^2).$$

Definition 2 (Correlation) Let $X, Y \in L^2(\Omega, \mathcal{F}, \mathbb{P})$ with $Var(X), Var(Y) \neq 0$. The (Pearson) correlation of X and Y is defined as

$$\rho(X,Y) := \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}} = \frac{Cov(X,Y)}{\sigma(X)\sigma(Y)}$$

Theorem 2

 $-1 \le \rho(X, Y) \le 1.$

Equivalently,

$$Cov(X,Y)^2 \leq Var(X)Var(Y).$$

Proof Let $X' = X - \mathbb{E}(X)$ and $Y' = Y - \mathbb{E}(Y)$. Then by the properties of \mathbb{E} , Var and Cov we have $\mathbb{E}(X') = \mathbb{E}(Y') = 0$, Var(X') = Var(X), Var(Y') = Var(Y) and Cov(X', Y') = Cov(X, Y). So, to prove the statement, it suffices to show that

$$Cov(X',Y')^2 \le Var(X')Var(Y').$$

Now observe that $Cov(X', Y') = \mathbb{E}(X'Y')$, $Var(X') = \mathbb{E}(X'^2)$ and $Var(Y') = \mathbb{E}(Y'^2)$. Hence, $Cov(X', Y')^2 \leq Var(X')Var(Y')$ is a direct consequence of Theorem 1.

Exercise 1 Examine the above proofs to determine the relationship between X and Y, given $\rho(X, Y) = 1$ or $\rho(X, Y) = -1$.

Theorem 3 (Variance of a sum) Let $X_1, \ldots, X_n \in L^2(\Omega, \mathcal{F}, \mathbb{P})$ be all discrete or (mutually) jointly continuous, and let $X = X_1 + \cdots + X_n$. Then $X \in L^2(\Omega, \mathcal{F}, \mathbb{P})$, and

$$Var(X) = \sum_{i=1}^{n} \sum_{j=1}^{n} Cov(X_i, X_j) = \sum_{i=1}^{n} Var(X_i) + 2\sum_{i \neq j} Cov(X_i, X_j).$$

Proof By bilinearity and symmetry of the covariance,

$$Var(X) = Var(X_{1} + \dots + X_{n}) = Cov(X_{1} + \dots + X_{n}, X_{1} + \dots + X_{n})$$

= $\sum_{i=1}^{n} \sum_{j=1}^{n} Cov(X_{i}, X_{j}) = \sum_{i=1}^{n} \sum_{j=1}^{n} Cov(X_{i}, X_{j}) = \sum_{i=1}^{n} Cov(X_{i}, X_{i}) + 2 \sum_{i \neq j} Cov(X_{i}, X_{j})$
= $\sum_{i=1}^{n} Var(X_{i}) + 2 \sum_{i \neq j} Cov(X_{i}, X_{j}).$

Theorem 4 (Convolution formula for continuous rv's) Let $X, Y \in (\Omega, \mathcal{F}, \mathbb{P})$ be jointly continuous. Then Z = X + Y is continuous, with the probability density function

$$f_Z(z) = \int_{-\infty}^{\infty} f_{X,Y}(x, z - x) \, dx = \int_{-\infty}^{\infty} f_{X,Y}(z - y, y) \, dy.$$

In particular, if X and Y are independent we have

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) \, dx = \int_{-\infty}^{\infty} f_X(z-y) f_Y(y) \, dy.$$

In that case we write $f_Z = f_X * f_Y(= f_Y * f_X)$ and call f_Z the (continuous) convolution of f_X and f_Y .

We skip the proof, but notice that the above is analogous to the discrete convolution formula.

Example 1 (Convolution for the normal distribution) Let $X, Y \sim \mathcal{N}(0, 1)$ be independent. Then, for Z = X + Y we have

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) \, dx = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{(z-x)^2}{2}} \, dx$$
$$= \frac{1}{2\pi} e^{-\frac{z^2}{4}} \int_{-\infty}^{\infty} e^{-x^2 + zx - \frac{z^2}{4}} \, dx = \frac{1}{2\pi} e^{-\frac{z^2}{4}} \int_{-\infty}^{\infty} e^{-(x-\frac{z}{2})^2} \, dx$$
$$= \frac{1}{2\pi} e^{-\frac{z^2}{4}} \cdot \sqrt{\pi} = \frac{1}{2\sqrt{\pi}} e^{-\frac{z^2}{4}},$$

and thus $Z \sim \mathcal{N}(0,2)$. This holds for the normal distribution more generally:²

$$\mathcal{N}(\mu_1, \nu_1) * \mathcal{N}(\mu_2, \nu_2) = \mathcal{N}(\mu_1 + \mu_2, \nu_1 + \nu_2).$$

Exercise 2 (Convolution for the Gamma distribution) Recall that the $Gamma(r, \alpha)$ distribution is defined on $[0, \infty)$ via the pdf

$$\gamma_{r,\alpha} = \frac{1}{\Gamma(r)} \alpha^r x^{r-1} e^{-\alpha x}, \quad where \quad \Gamma(r) = \int_0^\infty x^{r-1} e^{-x} \, dx.$$

Prove that

$$\Gamma(r,\alpha) * \Gamma(s,\alpha) = \Gamma(r+s,\alpha).$$

Recall also that $Gamma(1, \alpha)$ is the exponential distribution $Exp(\alpha)$. Thus, for a positive integer r, the sum of r independent $Exp(\alpha)$ -variables is $Gamma(r, \alpha)$ -distributed.³

Lastly, let us introduce two fundamental probabilistic inequalities, which apply to discrete and continuous random variables alike.

²The behaviour of the parameters should not come as a surprise, given that μ and ν are the mean and variance of $\mathcal{N}(\mu,\nu)$, respectively.

³An interpretation: when the time until the next meteorite impact is $Exp(\alpha)$ -distributed, the time for the *r*-th meteorite to arrive is distributed with $Gamma(r, \alpha)$, while the number of meteorites in a time interval is Poisson-distributed.

Theorem 5 (Markov's inequality) Let $X \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ satisfy $X \ge 0$ a.s. Then for every t > 0we have

$$\mathbb{P}(X \ge t) \le \frac{\mathbb{E}(X)}{t}.$$

This has a very simple interpretation: "if the average age in a room is 20, at most 50% of the people in it can be above 40."

Proof Let $Y = t \cdot \mathbb{1}_{\{X > t\}}$. Then $X \ge Y$, so $Y \in L^1$ and

$$\mathbb{E}(X) \ge \mathbb{E}(Y) = t \cdot \mathbb{P}(X \ge t)$$

I		1
н		

Theorem 6 (Chebyshev's inequality) Let $X \in L^2(\Omega, \mathcal{F}, \mathbb{P})$ and c > 0. Then

$$\mathbb{P}(|X - \mathbb{E}(X)| \ge c) \le \frac{Var(X)}{c^2}.$$

Proof Applying Markov's inequality (Theorem 5) with $Z = (X - \mathbb{E}(X))^2$ and $t = c^2$ gives

$$\mathbb{P}(|X - \mathbb{E}(X)| \ge c) = \mathbb{P}(Z \ge c^2) \le \frac{\mathbb{E}(Z)}{c^2} = \frac{Var(X)}{c^2}.$$

Example 2 Consider 100 independent (fair) coin tosses. How likely are we to see at least 60 'heads'? That is, for $X \sim Bin(100, 1/2)$ estimate $\mathbb{P}(X \ge 60)$. By symmetry and Chebyshev's inequality (as $\mathbb{E}(X) = 50$ and Var(X) = 25) we have

$$\mathbb{P}(X \ge 60) = \mathbb{P}(X - 50 \ge 10) = \frac{1}{2}\mathbb{P}(|X - 50| \ge 10) \le \frac{1}{2}\frac{\operatorname{Var}(X)}{10^2} = \frac{1}{8} = 12.5\%$$

This is not bad for a first estimate, however, we will shortly see that the actual probability to get 60 or more heads is much smaller, namely about 2.5%.