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Lecture 8 - Random variables: odds and ends.

Definition 1 (Covariance) Let X,Y: (2, F,P) — R be either both discrete, or both (jointly) con-
tinuous. The covariance of X and Y, denoted Cov(X,Y") is defined (subject to convergence) as

Cov(X,Y)=E(X —E(X)(Y —E(Y)).
Note that Cov(X, X) = Var(X).

Lemma 1 Cov(X,Y) =E(XY) - E(X)E(Y).

Proof Using linearity of expectation,

Cov(X,Y) =E((X — E(X)(Y —E(Y)) = E(XY — E(X)Y — E(Y)X + E(X)E(Y))
= E(XY) - E(X)E(Y) — E(X)E(Y) + E(X)E(Y) = E(XY) — E(X)E(Y).

a

Note that the covariance operator is symmetric, i.e., Cov(X,Y) = Cov(Y, X) and using Lemma 1 one
can see that it is also bilinear: Cov(X,Y + Z) = Cov(X,Y) + Cov(X, Z).

If Cov(X,Y) = 0, that is when E(XY) = E(X)E(Y), we say that X and Y are uncorrelated. This
is the case when X and Y are independent, but in general uncorrelated random variables need not
be independent!, as we saw in Lecture 7. We say that X and Y are positively/negatively correlated if
Cov(X,Y) > 0 and if Cov(X,Y) < 0, respectively.

Theorem 1 (Probabilistic Cauchy-Schwarz inequality) Let X,Y € L?(Q2, F,P). Then XY €

LY(Q, F,P), and
E(XY)? <E(X?)E(Y?).

Proof Given X and Y, let f: R — R be the real function defined as
F() = E((£X +Y)2).
By linearity of expectation we can write it as

ft) =E(#*X? +2tXY +Y?) = PE(X?) + 2E(XY) + E(Y?) =: at® + bt + c,

ntuitively, the covariance indicates how likely both variables will be simultaneously above or below their respective
expectations.



where we set a = E(X?),b=2E(XY) and ¢ = E(Y?). Observe now that (tX + Y)2 > 0 always, and
therefore,
0 < B((LX +Y)?) = f(1),

for all values of t. So, the quadratic function at? + bt + ¢, takes only non-negative values, meaning its
discriminant must be non-positive: b2 < 4ac. This translates to

4E(XY)? < AE(X?E(Y?).

|

Definition 2 (Correlation) Let X,Y € L*(Q, F,P) with Var(X),Var(Y) # 0. The (Pearson)
correlation of X and Y is defined as
Cov(X,Y) _ Cov(X,Y)

pIXY) = VVar(X)Var(Y) o X)o(Y)'

Theorem 2
-1<p(X)Y) <1
Equivalently,
Cov(X,Y)? < Var(X)Var(Y).

Proof Let X' =X —E(X) and Y/ =Y — E(Y). Then by the properties of E, Var and Cov we have
E(X') =EY’') =0, Var(X') = Var(X), Var(Y') = Var(Y) and Cov(X",Y") = Cov(X,Y). So, to
prove the statement, it suffices to show that

Cov(X',Y")? < Var(X"\Var(Y").
Now observe that Cov(X',Y'") = E(X'Y’), Var(X') = E(X"?) and Var(Y’) = E(Y’?). Hence,
Cov(X',Y")2 < Var(X")Var(Y') is a direct consequence of Theorem 1. O

Exercise 1 Ezamine the above proofs to determine the relationship between X and Y, given p(X,Y) =
1orpX,Y)=—

Theorem 3 (Variance of a sum) Let X1,..., X, € L*(Q, F,P) be all discrete or (mutually) jointly
continuous, and let X = X1 +---+ X,,. Then X € L*(Q, F,P), and

Var(X) = Zn:zn:Cov(Xi,Xj) = iVar(Xi) + 2ZCOU(XZ‘,XJ').

i=1 j=1 i=1 i]

Proof By bilinearity and symmetry of the covariance,

Var(X ):Var(X1+--~+X ):C’OU(X1—|—~-+Xn,X1—|—--~+Xn)

= ZZCOU (Xi, Xj) ZZCOU (Xi, Xj) Zn:Cov(Xi,Xi) + 2ZCOU(X7;,X]')

i=1 j=1 i=1 j=1 i=1 1#]
n

= ZVCLT(XZ') + QZCOU(XZ‘,X]‘).
i—1 i2j



Theorem 4 (Convolution formula for continuous rv’s) Let X, Y € (Q, F,P) be jointly contin-
wous. Then Z = X +Y is continuous, with the probability density function

fz(2) = /_ fxy(z,z—x)dr = /_ fxy(z—y,y)dy.
In particular, if X and Y are independent we have
f20) = [ ax@pve—aydo= [ ixlz=pivi) du

In that case we write fz = fx * fy (= fy * fx) and call fz the (continuous) convolution of fx and

fr.

We skip the proof, but notice that the above is analogous to the discrete convolution formula.

Example 1 (Convolution for the normal distribution) Let X, Y ~ N(0,1) be independent. Then,
for Z =X +Y we have
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and thus Z ~ N(0,2). This holds for the normal distribution more generally:?

N(p1,v1) * N (p2, v2) = N (p + pa, v + 12).

Exercise 2 (Convolution for the Gamma distribution) Recall that the Gamma(r, o) distribu-
tion is defined on [0,00) via the pdf

1 1 _ ® 4
Yra = =——a 2" e where T(r) = 2" e da.
0

I'(r)

Prove that
L(r,a)«I(s,a) =T(r +s,a).

Recall also that Gamma(1, «) is the exponential distribution Exzp(«). Thus, for a positive integer r,
the sum of 7 independent Exp(a)-variables is Gamma(r, a)-distributed.?

Lastly, let us introduce two fundamental probabilistic inequalities, which apply to discrete and con-
tinuous random variables alike.

2The behaviour of the parameters should not come as a surprise, given that p and v are the mean and variance of
N (u,v), respectively.

3An interpretation: when the time until the next meteorite impact is Exp(a)-distributed, the time for the r-th
meteorite to arrive is distributed with Gamma(r, o)), while the number of meteorites in a time interval is Poisson-
distributed.



Theorem 5 (Markov’s inequality) Let X € L'(Q, F,P) satisfy X > 0 a.s. Then for every t > 0

we have
E(

—

~—

P(X >t) <

This has a very simple interpretation: ”if the average age in a room is 20, at most 50% of the people
in it can be above 40.”

Proof Let Y =¢-1;x>y. Then X >V ,s0Y € L' and

E(X)>E(Y) =t P(X >1).

a
Theorem 6 (Chebyshev’s inequality) Let X € L?(Q), F,P) and ¢ > 0. Then
B(X ~E(X)| 2 ¢ < V)
Proof Applying Markov’s inequality (Theorem 5) with Z = (X — E(X))? and t = ¢? gives
P(X —E(X)| > 0 = P(Z > ) < ) = VerlX)
O

Example 2 Consider 100 independent (fair) coin tosses. How likely are we to see at least 60 ‘heads’?
That is, for X ~ Bin(100,1/2) estimate P(X > 60). By symmetry and Chebyshev’s inequality (as
E(X) =50 and Var(X) = 25) we have

1 Var(X)

1 1
P(X > 60) = P(X —50 > 10) = JP(|X —50] > 10) < 5~ o = o = 12.5%.

This is not bad for a first estimate, however, we will shortly see that the actual probability to get 60
or more heads is much smaller, namely about 2.5%.



