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Lecture 8 - Random variables: odds and ends.

Definition 1 (Covariance) Let X,Y : (Ω,F ,P) → R be either both discrete, or both (jointly) con-

tinuous. The covariance of X and Y , denoted Cov(X,Y ) is defined (subject to convergence) as

Cov(X,Y ) = E((X − E(X)(Y − E(Y )).

Note that Cov(X,X) = Var(X).

Lemma 1 Cov(X,Y ) = E(XY )− E(X)E(Y ).

Proof Using linearity of expectation,

Cov(X,Y ) = E((X − E(X)(Y − E(Y )) = E(XY − E(X)Y − E(Y )X + E(X)E(Y ))

= E(XY )− E(X)E(Y )− E(X)E(Y ) + E(X)E(Y ) = E(XY )− E(X)E(Y ).
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Note that the covariance operator is symmetric, i.e., Cov(X,Y ) = Cov(Y,X) and using Lemma 1 one

can see that it is also bilinear: Cov(X,Y + Z) = Cov(X,Y ) + Cov(X,Z).

If Cov(X,Y ) = 0, that is when E(XY ) = E(X)E(Y ), we say that X and Y are uncorrelated. This

is the case when X and Y are independent, but in general uncorrelated random variables need not

be independent1, as we saw in Lecture 7. We say that X and Y are positively/negatively correlated if

Cov(X,Y ) > 0 and if Cov(X,Y ) < 0, respectively.

Theorem 1 (Probabilistic Cauchy-Schwarz inequality) Let X,Y ∈ L2(Ω,F ,P). Then XY ∈
L1(Ω,F ,P), and

E(XY )2 ≤ E(X2)E(Y 2).

Proof Given X and Y , let f : R → R be the real function defined as

f(t) = E((tX + Y )2).

By linearity of expectation we can write it as

f(t) = E(t2X2 + 2tXY + Y 2) = t2E(X2) + 2tE(XY ) + E(Y 2) =: at2 + bt+ c,

1Intuitively, the covariance indicates how likely both variables will be simultaneously above or below their respective

expectations.
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where we set a = E(X2), b = 2E(XY ) and c = E(Y 2). Observe now that (tX + Y )2 ≥ 0 always, and

therefore,

0 ≤ E((tX + Y )2) = f(t),

for all values of t. So, the quadratic function at2 + bt+ c, takes only non-negative values, meaning its

discriminant must be non-positive: b2 ≤ 4ac. This translates to

4E(XY )2 ≤ 4E(X2)E(Y 2).
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Definition 2 (Correlation) Let X,Y ∈ L2(Ω,F ,P) with V ar(X), V ar(Y ) ̸= 0. The (Pearson)

correlation of X and Y is defined as

ρ(X,Y ) :=
Cov(X,Y )√

V ar(X)V ar(Y )
=

Cov(X,Y )

σ(X)σ(Y )
.

Theorem 2

−1 ≤ ρ(X,Y ) ≤ 1.

Equivalently,

Cov(X,Y )2 ≤ V ar(X)V ar(Y ).

Proof Let X ′ = X − E(X) and Y ′ = Y − E(Y ). Then by the properties of E, V ar and Cov we have

E(X ′) = E(Y ′) = 0, V ar(X ′) = V ar(X), V ar(Y ′) = V ar(Y ) and Cov(X ′, Y ′) = Cov(X,Y ). So, to

prove the statement, it suffices to show that

Cov(X ′, Y ′)2 ≤ V ar(X ′)V ar(Y ′).

Now observe that Cov(X ′, Y ′) = E(X ′Y ′), V ar(X ′) = E(X ′2) and V ar(Y ′) = E(Y ′2). Hence,

Cov(X ′, Y ′)2 ≤ V ar(X ′)V ar(Y ′) is a direct consequence of Theorem 1. 2

Exercise 1 Examine the above proofs to determine the relationship between X and Y , given ρ(X,Y ) =

1 or ρ(X,Y ) = −1.

Theorem 3 (Variance of a sum) Let X1, . . . , Xn ∈ L2(Ω,F ,P) be all discrete or (mutually) jointly

continuous, and let X = X1 + · · ·+Xn. Then X ∈ L2(Ω,F ,P), and

V ar(X) =
n∑

i=1

n∑
j=1

Cov(Xi, Xj) =
n∑

i=1

V ar(Xi) + 2
∑
i ̸=j

Cov(Xi, Xj).

Proof By bilinearity and symmetry of the covariance,

V ar(X) = V ar(X1 + · · ·+Xn) = Cov(X1 + · · ·+Xn, X1 + · · ·+Xn)

=
n∑

i=1

n∑
j=1

Cov(Xi, Xj) =
n∑

i=1

n∑
j=1

Cov(Xi, Xj) =
n∑

i=1

Cov(Xi, Xi) + 2
∑
i ̸=j

Cov(Xi, Xj)

=

n∑
i=1

V ar(Xi) + 2
∑
i ̸=j

Cov(Xi, Xj).
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Theorem 4 (Convolution formula for continuous rv’s) Let X,Y ∈ (Ω,F ,P) be jointly contin-

uous. Then Z = X + Y is continuous, with the probability density function

fZ(z) =

∫ ∞

−∞
fX,Y (x, z − x) dx =

∫ ∞

−∞
fX,Y (z − y, y) dy.

In particular, if X and Y are independent we have

fZ(z) =

∫ ∞

−∞
fX(x)fY (z − x) dx =

∫ ∞

−∞
fX(z − y)fY (y) dy.

In that case we write fZ = fX ∗ fY (= fY ∗ fX) and call fZ the (continuous) convolution of fX and

fY .

We skip the proof, but notice that the above is analogous to the discrete convolution formula.

Example 1 (Convolution for the normal distribution) Let X,Y ∼ N (0, 1) be independent. Then,

for Z = X + Y we have

fZ(z) =

∫ ∞

−∞
fX(x)fY (z − x) dx =

∫ ∞

−∞

1√
2π

e−
x2

2 · 1√
2π

e−
(z−x)2

2 dx

=
1

2π
e−

z2

4

∫ ∞

−∞
e−x2+zx− z2

4 dx =
1

2π
e−

z2

4

∫ ∞

−∞
e−(x− z

2
)2 dx

=
1

2π
e−

z2

4 ·
√
π =

1

2
√
π
e−

z2

4 ,

and thus Z ∼ N (0, 2). This holds for the normal distribution more generally:2

N (µ1, ν1) ∗ N (µ2, ν2) = N (µ1 + µ2, ν1 + ν2).

Exercise 2 (Convolution for the Gamma distribution) Recall that the Gamma(r, α) distribu-

tion is defined on [0,∞) via the pdf

γr,α =
1

Γ(r)
αrxr−1e−αx, where Γ(r) =

∫ ∞

0
xr−1e−x dx.

Prove that

Γ(r, α) ∗ Γ(s, α) = Γ(r + s, α).

Recall also that Gamma(1, α) is the exponential distribution Exp(α). Thus, for a positive integer r,

the sum of r independent Exp(α)-variables is Gamma(r, α)-distributed.3

Lastly, let us introduce two fundamental probabilistic inequalities, which apply to discrete and con-

tinuous random variables alike.

2The behaviour of the parameters should not come as a surprise, given that µ and ν are the mean and variance of

N (µ, ν), respectively.
3An interpretation: when the time until the next meteorite impact is Exp(α)-distributed, the time for the r-th

meteorite to arrive is distributed with Gamma(r, α), while the number of meteorites in a time interval is Poisson-

distributed.

3



Theorem 5 (Markov’s inequality) Let X ∈ L1(Ω,F ,P) satisfy X ≥ 0 a.s. Then for every t > 0

we have

P(X ≥ t) ≤ E(X)

t
.

This has a very simple interpretation: ”if the average age in a room is 20, at most 50% of the people

in it can be above 40.”

Proof Let Y = t · 1{X≥t}. Then X ≥ Y , so Y ∈ L1 and

E(X) ≥ E(Y ) = t · P(X ≥ t).

2

Theorem 6 (Chebyshev’s inequality) Let X ∈ L2(Ω,F ,P) and c > 0. Then

P(|X − E(X)| ≥ c) ≤ V ar(X)

c2
.

Proof Applying Markov’s inequality (Theorem 5) with Z = (X − E(X))2 and t = c2 gives

P(|X − E(X)| ≥ c) = P(Z ≥ c2) ≤ E(Z)

c2
=

V ar(X)

c2
.
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Example 2 Consider 100 independent (fair) coin tosses. How likely are we to see at least 60 ‘heads’?

That is, for X ∼ Bin(100, 1/2) estimate P(X ≥ 60). By symmetry and Chebyshev’s inequality (as

E(X) = 50 and V ar(X) = 25) we have

P(X ≥ 60) = P(X − 50 ≥ 10) =
1

2
P(|X − 50| ≥ 10) ≤ 1

2

Var(X)

102
=

1

8
= 12.5%.

This is not bad for a first estimate, however, we will shortly see that the actual probability to get 60

or more heads is much smaller, namely about 2.5%.
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