
NMAI059 – Probability and Statistics 1

Mykhaylo Tyomkyn

Lecture 7 - Expectation, variance, independence of continuous rv’s.

The concepts we have developed for discrete random variables extend to the continuous setting anal-

ogously, whereby the pmf is to be replaced with the pdf, and the sums with the integrals.

Definition 1 (Expected value of a continuous rv) Let X be a continuous random variable with

probability density function fX , and suppose1 that∫ ∞

−∞
|x|fX(x) dx < ∞.

The expected value/expectation/mean of X is defined as

E(X) =

∫ ∞

−∞
xfX(x) dx.

As in the discrete case, the expectation is a function of the distribution/the pdf of X (‘does not care

where X is coming from’). If
∫∞
−∞ |x|f(x) = ∞, we say that X does not have an expectation.

Exercise 1 Prove that the Cauchy distribution does not have a (finite) expectation.

If E(X) does exist (‘is finite’) we write X ∈ L1(Ω,F ,P), or simply (as the origin of X is often not

important) X ∈ L1 and call X an L1-random variable.2

Example 1 For X ∼ Exp(λ) we have (integrating by parts)

E(X) =

∫ ∞

0
x · λe−λx dx =

1

λ
.

Notice that this is analogous to E(X) = 1/p for X ∼ Geom(p).

Remark 1 If X is ‘discretized along the y-axis’, that is if we set Xn = ⌊nX⌋/n for n = 1, 2, . . . , then

each Xn is discrete, and by the properties of the Lebesgue integral, E(X) = limn→∞ E(Xn).

Theorem 1 (LOTUS for continuous rv’s) Let X be a continuous random variable with the pdf

fX , and let g : R → R be a function such that g(X) is continuous.3 Then (assuming convergence)

E(g(X)) =

∫ ∞

−∞
g(x)fX(x) dx

1This is analogous to the
∑

|x|pX < ∞ condition in the definition of E(X) for discrete X.
2We will adopt this notation also with discrete random variables
3This is known to be the case when g is continuously differentiable and piecewise monotone, e.g. g(x) = x2. We will

take this condition for granted in applications.
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We skip the proof, as it would require measure theory, but you can compare the statement with the

discrete case. The two can be related via the discretization procedure described in Remark 1.

Applying LOTUS to a linear function g(x) = ax+ b we obtain

Corollary 1 For any continuous X and a, b ∈ R we have E(aX + b) = aE(X) + b.

Let us now discuss the joint distribution. We start with a definition that applies to arbitrary random

variables.

Definition 2 (Joint cdf) Let X,Y : (Ω,F ,P) → R be random variables. The joint cumulative dis-

tribution function of X and Y is defined as FX,Y : R2 → [0, 1],

FX,Y (x, y) = P(X ≤ x, Y ≤ y).

Definition 3 (Jointly continuous rv’s) Two continuous random variables X,Y : (Ω,F ,P) → R
are called jointly continuous if there exists a function f = fX,Y : R2 → [0,∞) such that for all x, y ∈ R

FX,Y (x, y) =

∫ x

−∞

∫ y

−∞
f(s, t) dt ds.

In such case fX,Y is called the joint probability distribution function (joint pdf) of X and Y .

Note that, by Fubini’s theorem (which remains valid for Lebesgue integrals), the order of integration

can be reversed: ∫ x

−∞

∫ y

−∞
f(s, t) dt ds =

∫ y

−∞

∫ x

−∞
f(s, t) ds dt.

Moreover, also by Fubini’s theorem, f can be integrated over any Lebesgue measurable (i.e. any

‘reasonably defined’) shape A ⊆ R2, resulting in

P((X,Y ) ∈ A) =

∫
A
f(x, y) dx dy =

∫
A
f(x, y) dy dx.

Similarly to the discrete case, the marginals of fX,Y are given by

fX(x) =

∫ ∞

−∞
f(x, y) dy and fY (y) =

∫ ∞

−∞
f(x, y) dx,

and the conditionals are given by

fY |X(y | x) =
fX,Y (x, y)

fX(x)
and fX|Y (x | y) =

fX,Y (x, y)

fY (y)
.

Theorem 2 (LOTUS for joint distribution) Let fX,Y be the joint pdf of X and Y , and let g : R2 →
R be a function such that g(X,Y ) is continuous.4 Then (assuming convergence)

E(g(X,Y )) =

∫ ∞

−∞

∫ ∞

−∞
g(x, y)fX,Y (x, y) dx dy.

We again skip the proof, but observe that the statement is analogous to the discrete case.

4This is the case for functions such as the sum and the product. We will take this condition for granted in applications.
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Theorem 3 (Linearity of expectation) For jointly continuous random variables X,Y ∈ L1(Ω,F ,P)
we have X + Y ∈ L1(Ω,F ,P) and

E(X + Y ) = E(X) + E(Y ).

Proof Using LOTUS with the function g(x, y) = x+ y and Fubini’s theorem gives

E(X + Y ) =

∫ ∞

−∞

∫ ∞

−∞
(x+ y)fX,Y (x, y) dx dy

=

∫ ∞

−∞

∫ ∞

−∞
xfX,Y (x, y) dx dy +

∫ ∞

−∞

∫ ∞

−∞
yfX,Y (x, y) dx dy

=

∫ ∞

−∞
x

∫ ∞

−∞
fX,Y (x, y) dy dx+

∫ ∞

−∞
y

∫ ∞

−∞
fX,Y (x, y) dx dy

=

∫ ∞

−∞
xfX(x) dx+

∫ ∞

−∞
yfY (y) dy = E(X) + E(Y ).

2

Just like in the discrete case the variance of a continuous random variable X : (Ω,F ,P) → R is

defined (subject to convergence) as V ar(X) = E((X − E(X)2). If V ar(X) < ∞, we call X an L2-

random variable and5 write X ∈ L2(Ω,F ,P), or simply X ∈ L2. By the linearity of expectation just

established, we have (via the same proofs as in the discrete case) V ar(X) = E(X2) − E(X)2 and

V ar(aX + b) = a2V ar(X). Note that, by LOTUS, we have E(X2) =
∫∞
−∞ x2fX(x) dx. The standard

deviation of X ∈ L2 is, as before, σ(X) =
√
V ar(X).

Definition 4 (Independence or rv’s in general) X,Y : (Ω,F ,P) → (R,L) are independent if for

all I, J ∈ L we have

P(X ∈ I ∧ Y ∈ J) = P(X ∈ I)P(Y ∈ J).

Fact 1 To ensure independence it suffices to check the above condition ‘just’ for the sets {(I, J) =

((−∞, x], (−∞, y]) : x, y ∈ R}.

In other words, it suffices to establish that FX,Y (x, y) = FX(x)FY (y) for all x, y ∈ R.

Lemma 1 If X and Y are jointly continuous fX,Y = fX · fY then X and Y are independent

Proof

FX,Y (x, y) =

∫ x

−∞

∫ y

−∞
fX,Y (s, t) dt ds =

∫ x

−∞

∫ y

−∞
fX(s)fY (t) dt ds

=

∫ x

−∞
fX(s)

∫ y

−∞
fY (t) dt ds = FY (y)

∫ x

−∞
fX(s) ds

= FY (y)FX(x).

2

5Note that X ∈ L2(Ω,F ,P) automatically implies X ∈ L1(Ω,F ,P).
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Fact 2 The (essential) converse to this statement is also true: if X and Y are independent and jointly

continuous then fX,Y = fXfY a.s. (that is, P(fX,Y ̸= fX · fY ) = 0).

Example 2 (Multivariate uniform distribution) Take f = 1[0,1], the pdf of a Unif([0, 1]) vari-

able. Then the joint pdf of n independent Unif([0, 1]) variables is

f(t1) · · · f(tn) = 1[0,1](t1) · · ·1[0,1](tn) = 1[0,1]n(t1, . . . , tn).

Example 3 (Multivariate normal distribution) Take ϕ(t) = 1√
2π
e−t2/2, the pdf of a N (0, 1)

variable. Then the joint pdf of n independent N (0, 1) variables is

f(t1, . . . , tn) = ϕ(t1) · · ·ϕ(tn) =
1

(
√
2π)n

e−
t21+···+t2n

2 = (2π)−
n
2 e−

r2

2 ,

where r =
√

t21 + · · ·+ t2n is the euclidean norm || · ||2 of the vector (t1, . . . , tn) ∈ Rn.

Thus, f is a radially symmetric function (for the ‘random vector’ X = (X1, . . . , Xn) every direction is

‘equally likely’). In particular, for every vector u ∈ Rn, u = (u1, . . . , un) with ||u||2 = 1 we have

u ·X =

n∑
i=1

uiXi ∼ N (0, 1).

Theorem 4 For independent jointly continuous X,Y ∈ L1(Ω,F ,P) we have XY ∈ L1(Ω,F ,P) and

E(XY ) = E(X)E(Y ).

Proof By Theorem 2 with g(x, y) = xy, and by independence, we have

E(XY ) =

∫ ∞

−∞

∫ ∞

−∞
xyfX,Y (x, y) dx dy =

∫ ∞

−∞

∫ ∞

−∞
xyfX(x)fY (y) dx dy

=

∫ ∞

−∞
xfX(x)

∫ ∞

−∞
yfY (y) dy dx =

∫ ∞

−∞
xfX(x)E(Y ) dx

= E(Y )

∫ ∞

−∞
xfX(x) dx = E(Y )E(X).

2

Note that the converse does not hold: we can have E(XY ) = E(X)E(Y ) (in which case we say X and

Y are uncorrelated), when X and Y are not independent.

Example 4 Let X ∈ {−1, 0, 1} with pX(−1) = pX(0) = pX(1) = 1/3, and let Y = 1 if X = 0, and

Y = 0 otherwise. Then X and Y are uncorrelated but not independent.

Corollary 2 For independent jointly continuous X,Y ∈ L2(Ω,F ,P) we have X + Y ∈ L2(Ω,F ,P)
and

V ar(X + Y ) = V ar(X) + V ar(Y ).

The proof is exactly the same as in the discrete case.
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