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Lecture 6 - Continuous measures and random variables.

For countable sample spaces Ω we use F = 2Ω. On the other hand, for uncountable sample spaces

this would have some drawbacks. As the existence of Vitali sets demonstrates, we would no longer be

able to define a translation invariant measure, i.e. a probability function P such that for every fixed

t ∈ R and A ⊂ R we have P(A+ t) = P(A), where A+ t := {x+ t : x ∈ A}. To remedy this we restrict

the event space. This turns out not to be a major problem, as 2R is ‘too big’ anyway: most subsets

of R are too chaotic and uninteresting for any practical or even theoretical purpose. So, what should

serve as F when Ω = R? It is the so-called Lebesgue σ-algebra L = L(R). Defining it properly would

require delving into the area of mathematics known as measure theory, for which we do not have the

time. We will therefore introduce L and the underlying Lebesgue measure λ matter of factly.

Fact 1 (Lebesgue σ-algebra) 1 There exists a set family L ⊆ 2R with the following properties,

members of L are called (Lebesgue) measurable sets.

1. ∅ ∈ L and R ∈ L.

2. A ∈ L ⇒ R \A ∈ L.

3. A1, A2, . . . ∈ L ⇒
⋃∞

i=1Ai ∈ L. That is, countable unions of measurable sets are measurable.

Note that by 2. and De Morgan’s law, countable intersections are also measurable.

4. L contains all closed and all open intervals. More generally, L contains all open and closed sets

on R as the metric space (with the standard metric).

5. L is translation and dilation invariant. That is, for every A ∈ L and x, y ∈ R we have xA+y ∈ L,
where xA+ y = {xa+ y : a ∈ A}.

In summary, L contains essentially every subset of R imaginable.

Exercise 1 Show that the Cantor set belongs to L.

The above list of properties of L would by itself be vacuous, as 2R of course has all of them. What

makes it crucial is the existence of a translation invariant measure.

Fact 2 (Lebesgue measure) On L = L(R) there exists a function λ : L → [0,∞] (where we allow

+∞ as a value) known as the Lebesgue measure on R. It has the following properties.

1. λ(∅) = 0 and λ(R) = +∞.

1In general, a σ-algebra on a set Ω is a family F ⊆ 2Ω satisfying conditions 1.-3. below, with Ω in place of R.
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2. λ([a, b]) = b− a for all a ≤ b.

3. λ is σ-additive. In particular, λ(I) = +∞ for every unbounded interval I.

4. For every A ∈ L and x, y ∈ R we have λ(xA+ y) = |x|λ(A).

5. For every A ∈ L with λ(A) = 0 (we say A is a null set) we have 2A ⊆ L and λ(B) = 0 for every

B ⊆ A.

Note that λ is not a probability measure, as λ(R) = +∞ ≠ 1. However, we can turn it into a

probability measure if we restrict and rescale it to a bounded interval.

Definition 1 (Continuous uniform measure) For real numbers a < b the uniform probability

measure on2 Ω = [a, b], in notation Unif([a, b]), is the function P : L ∩ 2Ω → [0, 1],

P(A) =
λ(A)

λ(Ω)
=

λ(A)

b− a
.

Note that, assuming Fact 2, this is indeed a probability measure satisfying Kolmogoroff’s axioms.

Remark 1 The notions of L, λ and the uniform probability measure can be extended to Rn, where

the Lebesgue measure of a bounded set corresponds to its ‘area’ or ‘volume’.

Definition 2 (Lebesgue measurable function) A function f : R → R is a (Lebesgue) measurable

function if for every A ∈ L we have f−1(A) ∈ L, where f−1(A) = {x ∈ R : f(x) ∈ A} (the pre-image).

In practice, every continuous or otherwise ‘normally defined’ function is measurable. In fact, defining

a non-measurable functions equates in hardness to defining a non-measurable set.

Fact 3 (Lebesgue integral) The notion of the Riemann integral
∫ b
a f(x)dx, defined initially for

continuous functions, can be extended to all Lebesgue measurable functions f : R → [0,∞), defining

the Lebesgue integral
∫
fdλ ∈ R ∪ {+∞} such that3

1. When f is Riemann integrable, its Riemann and Lebesgue integrals have the same value

2. For any sequence f1, f2, . . . of non-negative measurable functions we have∫
(
∑
n≥1

fn)dλ =
∑
n≥1

(

∫
fndλ)

Note that the Riemann integral, apart from being defined for a narrower set of functions, does not

have property 2, as
∑

n≥1 fn may no longer be Riemann integrable. Hence, the Lebesgue integral is

superior to the Riemann integral in every possible regard.

Furthermore, the Lebesgue integral makes it possible to use measurable functions as so-called proba-

bility density functions in order to define further continuous probability measures.

2The uniform measure on an open or half-open bounded interval is defined in exactly the same way.
3It can be extended further to functions f : R → R, unless the positive and negative parts both have unbounded

integrals
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Definition 3 (Continuous measures) Let D be a measurable subset of R (typically, D = R or D

is an interval) and f : D → [0,∞) be a measurable function with
∫
fdλ = 1. Define the probability

measure Pf on L ∩ 2D by

Pf (A) =

∫
A
fdλ =

∫
f · 1Adλ,

where 1A is the indicator function of A, i.e. 1A(x) = 1 if x ∈ A and 1A(x) = 0 otherwise. The

function f is the probability density function of Pf .

Example 1 For a < b, using f : [a, b] → R, f(x) = 1/(b − a), we recover the uniform measure on

[a, b] from the previous example.

Example 2 (Exponential distribution) Let λ > 0 and let4

f(x) = λe−λx · 1[0,∞)(x).

Since
∫
R f(x)dx = 1, this defines a continuous probability distribution, the Exponential distribution

with parameter λ, denoted Exp(λ). This is the continuous analogue of the geometric distribution.

Example 3 (Cauchy distribution) Based on the fact that
∫∞
−∞

1
x2+1

dx = π, we can define a prob-

ability measure by the density function f(x) = 1
π(1+x2)

.

The next example is the single most important distribution in probability theory and statistics.

Example 4 (Normal/Gaussian distribution) Based on the fact that
∫∞
−∞ e−x2/2dx =

√
2π, the

function

ϕ(x) =
1√
2π

e−
x2

2

defines a probability measure on (R,L), the Normal or Gaussian distribution N (0, 1). More generally,

for parameters µ ∈ R and σ2 > 0, the distribution N (µ, σ2) is defined by the density function

f(x) =
1√
2πσ2

e−
1
2(

x−µ
σ )

2

.

Example 5 (Gamma distribution) The Gamma function Γ : (0,∞) → R is defined as Γ(t) =∫∞
0 xt−1e−xdx. In particular, Γ(1) = 1 and, integrating by parts: Γ(t+ 1) = tΓ(t). So, for an integer

t we have Γ(t) = (t − 1)! (the Gamma function is the ‘continuous factorial’). This gives rise to the

distribution Gamma(t, λ) with t, λ > 0, via the density function

f(x) =
1

Γ(t)
λtxt−1e−λx · 1[0,∞)(x).

Note that Γ(1, λ) is the exponential distribution Exp(λ). This is not a coincidence, we will return to

it when discussing the (continuous) convolution formula.

Definition 4 (General random variable) Let (Ω,F ,P) be a probability space. A (real-valued) ran-

dom variable is a function X : Ω → R such that X−1(L) ∈ F for all L ∈ L.
4λ here denotes a real number, not the Lebesgue measure
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Exercise 2 Verify that a discrete random variable, as defined previously, is a random variable.

Definition 5 (Distribution of a random variable) The distribution or pushforward measure of

X : (Ω,F ,P) → R is the probability measure PX on (R,L) defined by

PX(L) = P(X−1(L))

Definition 6 (Continuous random variable) A random variable X is continuous if PX is contin-

uous. In that case the probability density function of PX is referred to as probability density function

(pdf) of X, and denoted fX .

As in the discrete case, we will mainly care about the distribution and the probability density function

of a continuous random variable, rather than its origin.

Definition 7 (Cumulative distribution function for general random variables) Let X : Ω →
R be a random variable. Then

FX : R → [0, 1], FX(x) := P(X ≤ x)

is called the cumulative distribution function (cdf) of X.

Remark 2 A random variable X can be

� discrete (have a probability mass function),

� continuous (have a probability density function),

� neither. An example would be X = Y + Z, where Y is discrete and Z is continuous. How-

ever, there even exist ‘singular’ random variables that do not have any discrete or continuous

‘components’.5

However, FX exists always.

The basic properties of FX are the same as in the discrete case: we have limx→−∞ FX(x) = 0,

limx→+∞ FX(x) = 1, FX is non-decreasing and right-continuous6.

Theorem 1 (Relationship between pdf and cdf) Let X be a continuous random variable. Then

FX(x) =

∫ x

−∞
fX(t)dt, and if fX is continuous then fX =

dFX

dx
.

Example 6 For X ∼ Exp(λ) and x ≥ 0 we have

FX(x) = P(X ≤ x) =

∫ x

0
λe−λtdt = 1− e−λx.

5That being said, all measures and random variables we will be dealing with in this course will be either discrete or

continuous.
6FX is (both right and left) continuous when X is continuous
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