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Mykhaylo Tyomkyn

Lecture 5 - Variance, joint distribution, independence of discrete rv’s.

Two random variables can have the same mean, but very different deviations from it. To quantify

how much X deviates from µ = E(X) ‘on average’ we introduce the variance.

Definition 1 (Variance) Let X be a discrete random variable with E(X) = µ. The variance of X is

Var(X) := E((X − µ)2) = E((X − E(X))2).

Remark 1 The variance is defined only for variables with finite mean. However, even if E(X) is

finite, the variance may not exist (be finite). On the other hand, since (X − µ)2 ≥ 0 a.s., if the

variance does not exist, we can informally write Var(X) = +∞.

Remark 2 Just like the expectation, the variance is a function of the distribution (‘doesn’t care where

the variable is coming from’).

Example 1 Let X ∼ Bern(p), so that E(X) = p. We have

Var(X) = E((X − p)2) = (1− p)2 · p+ p2 · (1− p) = p(1− p)(p+ (1− p))

= p(1− p).

Example 2 Let X be the outcome of a fair die throw, i.e., X ∼ Unif{1, 2, 3, 4, 5, 6}. Then E(X) =

3.5 and

Var(X) =
2.52 + 1.52 + 0.52 + 0.52 + 1.52 + 2.52

6
=

35

12
.

Lemma 1 Var(X) = E(X2)− E(X)2.

Proof With µ = E(X), applying linearity of expectation, we obtain

Var(X) = E((X − µ)2) = E(X2 − 2µX + µ2) = E(X2)− 2µE(X) + µ2

= E(X2)− 2µ · µ+ µ2 = E(X2)− µ2.
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Corollary 1 For any discrete random variable X with finite mean and variance, we have

E(X2) ≥ E(X)2.
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Theorem 1 For any discrete random variable X with finite variance and a, b ∈ R we have

Var(aX + b) = a2Var(X).

Proof Let µ = E(X) and Y := aX + b. We know that E(Y ) = aµ+ b. Therefore,

Var(Y ) = E((Y − E(Y ))2) = E((aX + b− (aµ+ b))2) = E((a(X − µ))2)

= a2E((X − µ)2) = a2Var(X).
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Definition 2 (Standard deviation) Let X be a discrete random variable with finite variance. The

standard deviation of X is σ = σ(X) :=
√

Var(X).

The quantities µ(X) = E(X) and σ(X) =
√

Var(X) are the most important characteristics of a

random variable. But why don’t we measure the deviation from the mean ‘linearly’, i.e. consider

E(|X − µ|) instead of σ =
√

E((X − µ)2)? The reason is that the former is more difficult to handle

computationally, but also that Var and σ are of fundamental importance in the theorems to come

(Laws of large numbers, Central limit theorem).

Next, we would like to study interactions between random variables. So, suppose X,Y : (Ω,F ,P) → R
are discrete. Note that (X,Y ) takes countably many values.

Definition 3 (Joint distribution) For discrete random variables X,Y : (Ω,F ,P) → R, define their

joint probability mass function pX,Y : R2 → [0, 1],

pX,Y (x, y) = P(X = x ∧ Y = y).

1 Similarly, for n discrete random variables X1, . . . , Xn : (Ω,F ,P) → R their joint probability mass

function is pX1,...,Xn : Rn → [0, 1],

pX1,...,Xn(x1, . . . , xn) = P(X1 = x1 ∧ · · · ∧Xn = xn).

When ImX and ImY are finite, their joint distribution can be visualized by a two-dimensional ta-

ble/matrix.

Example 3 We toss a fair coin twice, counting 1 and 0 for ‘heads’ and ‘tails’, respectively. Let X be

the sum of the two outcomes, and Y be the product. Then the values of pX,Y are as follows.

Y

X
0 1 2

0 1/4 1/2 0

1 0 0 1/4
1P(X = x∧Y = y) is shorthand for P({ω ∈ Ω: X(ω) = x, Y (ω) = y}). We shall also write P(X = x, Y = y) to denote

the same.
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Note that the row-sums and column-sums in the table above are precisely the values of pY and pX ,

respectively. We say that pX and pY are the marginals of pX,Y . If, on the other hand, we fix a column

and rescale the values in it to make their sum 1, we obtain the conditionals

pY |X(y | x) := P(Y = y | X = x),

and symmetrically for rows and pX|Y . For instance, in the above example we have pX|Y (0 | 0) = 1/3.

A particularly important case of a joint distribution is when X and Y are independent.

Definition 4 (Independence) Two discrete random variables X,Y : (Ω,F ,P) → R are independent

if for every (x, y) ∈ ImX × ImY the events {X = x} and {Y = y} are independent. In other words,

when for all x and y we2 have

pX,Y (x, y) = pX(x)pY (y).

Similarly, X1, . . . , Xn : (Ω,F ,P) → R are (mutually) independent if for all (x1, . . . , xn) ∈ ImX1 ×
· · · × ImXn the events {X1 = x1}, . . . , {Xn = xn} are independent.

Exercise 1 Show that if X and Y are independent then for any I, J ⊆ R we have

P(X ∈ I, Y ∈ J) = P(X ∈ I)P(Y ∈ J).

Theorem 2 For any two independent discrete random variables X,Y : (Ω,F ,P) → R with finite

means we have

E(XY ) = E(X)E(Y ).

Proof

E(X)E(Y ) =
∑

x∈ImX

xpX(x)
∑

y∈ImY

ypY (y) =
∑

(x,y)∈ImX×ImY

xypX(x)pY (y)

Indep
=

∑
(x,y)∈ImX×ImY

xypX,Y (x, y) =
∑

t∈ImXY

t
∑

(x,y)∈ImX×ImY
xy=t

pX,Y (x, y)

=
∑

t∈ImXY

tP(XY = t) = E(XY ).
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Theorem 3 For any two independent discrete random variables X,Y : (Ω,F ,P) → R with finite

variances we have

Var(X + Y ) = Var(X) + Var(Y ).

Proof Using Lemma 1, linearity of expectation and Theorem 2, we obtain

Var(X + Y ) = E((X + Y )2)− E(X + Y )2 = E(X2 + 2XY + Y 2)− (E(X) + E(Y ))2

= E(X2) + 2E(XY ) + E(Y 2)− E(X)2 + 2E(X)E(Y )− E(Y )2

= E(X2)− E(X)2 + E(Y 2)− E(Y )2 = Var(X) + Var(Y ).

2In expanded form: P(X = x, Y = y) = P(X = x)P(Y = y).
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By extension, for n independent random variables X1, . . . , Xn with finite means/variances we have

E(X1 · · ·Xn) = E(X1) · · ·E(Xn) and Var(X1 + · · ·+Xn) = Var(X1) + · · ·+Var(Xn).

Example 4 Let X ∼ Bin(n, p). Then X = X1+· · ·+Xn, where X1, . . . , Xn are independent Bern(p)

random variables. Therefore,

Var(X) = Var(X1) + · · ·+Var(Xn) = np(1− p).

And so, σ(X) =
√

np(1− p).

Theorem 4 (LOTUS for joint distributions) Let X,Y : (Ω,F ,P) → R be discrete random vari-

ables and g : R → R be a function. Then Z = g(X,Y ) satisfies (assuming convergence)

E(Z) =
∑

(x,y)∈ImX×ImY

g(x, y)pX,Y (x, y).

Proof The proof essentially mirrors that of Theorem 2:∑
(x,y)∈ImX×ImY

g(x, y)pX,Y (x, y) =
∑

z∈ImZ

z
∑

(x,y)∈ImX×ImY
g(x,y)=z

P(X = x, Y = y) =
∑

z∈ImZ

zP(Z = z) = E(Z).

2

Theorem 5 (Convolution formula for discrete rv’s) Let X,Y : (Ω,F ,P) → R be discrete. Then

their sum Z = X + Y satisfies for all z ∈ ImZ

pZ(z) =
∑

x∈ImX

pX,Y (x, z − x) =
∑

y∈ImY

pX,Y (z − y, y).

If X and Y are independent then for all z ∈ ImZ

pZ(z) =
∑

x∈ImX

pX(x)pY (z − x) =
∑

y∈ImY

pX(z − y)pY (y). (1)

The proof is a direct application of the law of total probability and the definition of independence.

The convolution formula provides another tool for constructing new probability measures. In notation,

with pZ as in (1) (so Z corresponds to the sum of independent X and Y ) we write pZ = pX ∗ pY and

call pZ the convolution of pX and pY (note that pX ∗ pY = pY ∗ pX). A remarkable feature of the

convolution operator is that it preserves many ‘typical’ distributions.

Example 5 Let X ∼ Bin(n, p) and Y ∼ Bin(m, p) be independent. Then Z ∼ Bin(n+m, p) (think

of independent coin tosses). Hence,

Bin(n+m, p) = Bin(n, p) ∗Bin(m, p).

Exercise 2 Verify the above by a calculation, using the convolution formula.
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