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Lecture 4 - Expectation of discrete random variables.

Given a discrete random variable, we want to measure its ‘average value’. One approach is to use the

cdf FX(x) = P(X ≤ x) and consider x satisfying FX(x) = 1/2. This value is known as the median of

X. But while the median is a useful concept, it suffers from being not always a unique value (e.g.,

any value x ∈ [0, 1) is a median of X ∼ Bern(1/2)) and being difficult to handle computationally. A

more commonly used concept in both theory and practice is the expected value (‘mean’) of X.

Definition 1 (Expected value of a discrete rv.) Let X : (Ω,F ,P) → R be a discrete random

variable, and suppose that ∑
x∈ImX

|x|pX(x) < ∞. (1)

The expected value/expectation/mean of X, is defined as

E(X) =
∑

x∈ImX

xpX(x).

Remark 1 The validity of this definition is based on the fact from Analysis that absolute convergence

of a series implies convergence, and the limit does not depend on the summation order.

Remark 2 E(X) is a function of the distribution pX (“doesn’t care where X is coming from”).

If (1) does not hold, we say that X does not have an expectation. Note that if ImX is finite,

condition (1) becomes vacuously true, so E(X) always exists.

Example 1 Let X ∼ Bern(p). Then E(X) = p · 1 + (1− p) · 0 = p

Example 2 Let X ∼ Bin(n, p). Then

E(X) =

n∑
k=0

kpk(1− p)n−k

(
n

k

)
=

n∑
k=1

pk(1− p)n−k n! · k
k!(n− k)!

=

n−1∑
k=0

pk+1(1− p)n−k−1 n! · (k + 1)

(k + 1)!(n− k − 1)!
= np

n−1∑
k=0

pk(1− p)n−k−1

(
n− 1

k

)
= np(p+ (1− p))n−1 = np.
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Example 3 Let X ∼ Geo(p). Then

E(X) = p+ 2p(1− p) + 3p(1− p)2 + · · · = p(1 + 2(1− p) + 3(1− p)2 + . . . )

= p(1 + (1− p) + (1− p)2 + . . . )2 = p

(
1

1− (1− p)

)2

= p · 1

p2
=

1

p
.

We will shortly see more elegant ways of doing the last two examples.

Sometimes we will have that ImX is infinite but X ≥ 0 a.s.1, that is P(X ≥ 0) = 1. In this case

either E(X) exists (‘is finite’) or we have
∑

xpX(x) = ∞, in which case we may informally write

E(X) = +∞.

Example 4 Let pX((−2)k) = 2−k for k = 1, 2, . . . . Let Y = |X|, so pY (2
k) = 2−k for k = 1, 2, . . . .

Then ∑
x∈ImX

|x|pk(x) =
∞∑
k=1

2k · 2−k = ∞,

so X does not have an expectation. The same calculation shows that Y also does not have an expec-

tation, but since Y ≥ 0 a.s., we may write E(Y ) = +∞.

Lemma 1 Let Ω be countable and X : (Ω, 2Ω,P) → R be a discrete random variable with finite expec-

tation. We have

E(X) =
∑
ω∈Ω

X(ω)P({ω}).

Proof ∑
ω∈Ω

X(ω)P({ω}) =
∑

x∈ImX

∑
ω∈Ω: X(ω)=x

X(ω)P({ω}) =
∑

x∈ImX

∑
ω∈Ω: X(ω)=x

xP({ω})

=
∑

x∈ImX

x
∑

ω∈Ω: X(ω)=x

P({ω}) =
∑

x∈ImX

xP(X = x)

=
∑

x∈ImX

xpX(x) = E(X).
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Example 5 A fair coin is tossed twice, independently. Let X : {H,T}2 → {0, 1, 2} count the number

of ‘heads’. Then

E(X) =
∑

x∈ImX

xpX(x) = 0 · 1
4
+ 1 · 1

2
+ 2 · 1

4
= 1, or alternatively

E(X) = 0 · P(TT ) + 1 · P(HT ) + 1 · P(TH) + 2 · P(HH) = 0 +
1

4
+

1

4
+

1

2
= 1.

1a.s. is short for “almost surely”. “Event A holds a.s.” means P(A) = 1.
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Theorem 1 (Basic properties of the expectation) Let X be a discrete random variable with fi-

nite mean.

1. If X ≥ 0 a.s. then E(X) ≥ 0.

2. If E(X) ≥ 0 then P(X ≥ 0) > 0.

3. If X ≥ 0 a.s. and E(X) = 0 then X = 0 a.s.

4. E(aX + b) = aE(X) + b for all a, b ∈ R.

Proof 1.-3. follow directly from the definitions. 4. is the consequence of the LOTUS theorem, see

below. 2

Theorem 2 (LOTUS: law of the unconscious statistician) Let X be a discrete random variable

and g : R → R be a function. Then, provided E(g(X)) exists,

E(g(X)) =
∑

x∈ImX

g(x)pX(x)

Proof Let Y = g(X). Then

E(g(X)) = E(Y ) =
∑

y∈ImY

yP(Y = y) =
∑

y∈Im g(X)

yP(g(X) = y)

=
∑

y∈Im g(X)

∑
x∈ImX : g(x)=y

g(x)P(X = x)

=
∑

x∈ImX

g(x)P(X = x) =
∑

x∈ImX

g(x)pX(x).

2

Applying LOTUS with g(x) = ax+ b readily gives statement 4. of Theorem 1:

E(aX + b) =
∑

x∈ImX

(ax+ b)pX(x) = a
∑

x∈ImX

xpX(x) + b
∑

x∈ImX

pX(x) = aE(X) + b.

Theorem 3 (Linearity of expectation) Let X,Y : Ω → R be discrete random variables with finite

expectation. Then

E(X + Y ) = E(X) + E(Y ).

In particular, X + Y has finite expectation.

Proof We will prove it in the case when Ω is countable, and leave the general case as a harder exercise.

When Ω is countable, by Lemma 1 we can write

E(X + Y ) =
∑
ω∈Ω

(X(ω) + Y (ω))P({ω}) =
∑
ω∈Ω

X(ω)P({ω}) +
∑
ω∈Ω

Y (ω)P({ω}) = E(X) + E(Y ).

2
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Corollary 1 (Monotonicity of E) If X ≥ Y a.s. then E(X) ≥ E(Y ).

Proof By the previous theorems, since X − Y ≥ 0 a.s., we obtain

0 ≤ E(X − Y ) = E(X) + E(−Y ) = E(X)− E(Y ).

2

Example 6 Let us revisit Example 2. We have X : {H,T}n → R, X ∼ Bin(n, p), counting the

‘heads’. Then X = X1 + · · ·+Xn, where Xi is the number of heads at the i-th toss. So Xi ∼ Bern(p)

for all i, and by linearity of expectation we obtain

E(X) = E(X1) + · · ·+ E(Xn) = np.

Note that we did not even use that the coin tosses are independent.

Just like conditional probabilities we may also define conditional expectations of random variables

with respect to events.2

Definition 2 (Conditional expectation) Let X be a discrete random variable, and let A ∈ F ,

P(A) > 0 be an event. The conditional expectation of X given A is (assuming convergence)

E(X | A) :=
∑

x∈ImX

xP(X = x | A).

Theorem 4 (Law of total expectation) Let A1, A2 . . . be a countable partition of Ω with P(Ai) >

0 for all i. Then (assuming convergence)

E(X) =
∑
i

E(X | Ai)P(Ai).

Proof ∑
i

E(X | Ai)P(Ai) =
∑
i

∑
x∈ImX

xP(X = x | Ai)P(Ai) =
∑

x∈ImX

x
∑
i

P({X = x} ∩Ai)

=
∑

x∈ImX

xP(X = x) = E(X).

2

Example 7 Revisiting Example 3, let X ∼ Geo(p) be measuring the time of the first ‘heads’ in a

sequence of independent tosses. Let A be the event that the first toss is ‘heads’. By the law of total

expectation

E(X) = E(X | A)P(A) + E(X | A)P(A) = 1 · p+ E(X + 1)(1− p) = p+ (E(X) + 1)(1− p).

Resolving this (and assuming E(X) is finite) gives E(X) = 1/p.

2A more general concept of conditional expectation with respect to another random variable will be out of scope for

this course.
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