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Lecture 3 - Discrete random variables.

Often we are interested not in the actual outcome of a random experiment, but in some function of it.

Example 1 Consider the gambler’s ruin problem from Lecture 2. We may want to track the time

(number of tosses) it takes for the game to end.

Example 2 We throw a dart at a circular target. We are interested not in the exact place it hits, but

in its distance from the centre.

Definition 1 (Discrete random variable) Let (Ω,F ,P) be a probability space. A function X : Ω →
R is a (real-valued) discrete random variable if the set ImX = {X(ω) : ω ∈ Ω} is countable 1[and for

every x ∈ R we have {ω ∈ Ω: X(w) = x} ∈ F ].

In particular, when Ω is countable, every function X : Ω → R is a discrete random variable. 2

Definition 2 (Probability mass function) The probability mass function (pmf) of a discrete ran-

dom variable X : Ω → R is the function pX : R → [0, 1], pX(x) := P(X = x). 3

Note that, by σ-additivity, we always have∑
x∈ImX

pX(x) =
∑

x∈ImX

P(X = x) = 1,

as the sets {ω ∈ Ω: X(ω) = x} form a countable partition of Ω. Therefore, with S = ImX and

Q : 2S → [0, 1], Q(A) =
∑

x∈A pX(x) we obtain a countable probability space (S, 2S , Q). In other

words, random variables can be used as a tool for constructing probability spaces. Consequently we

shall speak of distributions of discrete random variables, referring to their pmf’s.

Let us now introduce some of the best-known discrete random variables and their distributions.

Example 3 (Bernoulli distribution) Consider a coin that comes up ‘heads’ with probability p ∈
[0, 1]. Let X : Ω = {H,T} → R count the number of ‘heads’ in a single toss. That is, X(H) =

1;X(T ) = 0. Then we have pX(1) = p and pX(0) = 1−p. This probability function on {0, 1} is known

as the (p-)Bernoulli distribution, denoted Bern(p), and X is a (p-)Bernoulli random variable. We

write X ∼ Bern(p) to signify that pX = Bern(p).4

1The last condition can be ignored if we assume F = 2Ω
2By convention we shall use letters A,B,C for events, X,Y, Z for random variables and x, y, z for their values
3Another convention is to denote events involving random variables by their properties. For instance, P(X = x) is a

convenient shorthand for P({ω ∈ Ω: X(w) = x}).
4And we shall use ∼ similarly for other ‘named’ distributions.
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Example 4 (Binomial distribution) Let now X be the number of ‘heads’ in n independent tosses

of the coin from the previous example. Then, with Ω = {H,T}n, for each k ∈ {0, 1 . . . , n} we have

pX(k) =

(
n

k

)
pk(1− p)n−k.

This is known as the binomial distribution with parameters n and p, in notation X ∼ Bin(n, p). Note

that by the binomial theorem
∑n

k=0 pX(k) = (p+ (1− p))n = 1, as it should.

Just like functions in general, random variables on the same space can be added and multiplied: if

X,Y : Ω → R are discrete random variables, then so are X + Y and XY (where (X + Y )(ω) =

X(ω)+Y (ω), and analogously for the product5). Similarly one can define arbitrary binary operations

on random variables, such as max(X,Y ),min(X,Y ), XY etc.

In the same fashion, if X is a discrete random variable and f : R → R a function, then f(X) is a

discrete random variable. This allows us to speak of X2,
√
X, eX etc.

Intuitively, a Bin(n, p) random variable is the sum of n p-Bernoulli random variables, but one needs to

be careful describing the underlying probability space. We will return to this question when discussing

the joint distribution and independence of random variables.

Alongside the pmf, there is another important function related to X.

Definition 3 (Cumulative distribution function) Let X : Ω → R be a discrete random variable.

Then

FX : R → [0, 1], FX(x) := P(X ≤ x)

is called the cumulative distribution function (cdf) of X.

Exercise 1 Determine FX , for X ∼ Bern(p).

Note that we can express the cdf using the pmf

FX(x) = P(X ≤ x) =
∑
t≤x

P(X = t) =
∑
t≤x

pX(t).

In the opposite direction, expressing the pmf using the cdf is in general not straightforward (can you

tell why?) but when ImX ⊆ Z we have pX(x) = FX(x)− FX(x− 1).

Theorem 1 (Properties of the cdf) For any discrete random variable X we have

1. FX is non-decreasing.

2. limx→−∞ FX(x) = 0 and limx→∞ FX(x) = 1.

3. FX is right-continuous: limϵ→0+ f(x+ ϵ) = f(x) for all x ∈ R.

Proof Assertion 1. follows by monotonicity and assertions 2. and 3. by continuity of probability

(exercise). 2

Let us now go back to considering examples of discrete random variables and their distributions.

5Exercise: Check that X + Y takes countably many values if X and Y do.
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Example 5 (Geometric distribution) Let 0 < p < 1. Take a coin that comes up ‘heads’ with

probability p and toss it repeatedly. Let X be the ‘time’ (toss number) when the coin comes up ‘heads’

for the first time. Then, for each n ∈ N we have

P(X = n) = p(1− p)n−1.

We say that X is geometrically distributed with parameter p. In notation, X ∼ Geo(p). Note that∑
n≥1

P(X = n) = p(1 + (1− p) + (1− p)2 + . . . ) = p · 1

1− (1− p)
= 1,

indeed. Note also that P(X > n) = (1− p)n, and so

FX(n) = 1− (1− p)n.

Exercise 2 Compare this with the geometric distribution example from Lecture 1, and verify that the

latter was Geo(1/2).

Example 6 (Hypergeometric distribution) Suppose an urn contains N balls, of which K are

white and N −K are black. We draw n balls uniformly at random, without replacement. Let X count

the number of white balls drawn, then

pX(k) =

(
K
k

)(
N−K
n−k

)(
N
n

) .

This is known as the hypergeometric distribution and denoted X ∼ Hyper(N,K, n).

Remark 1 We can use this fact to prove the combinatorial identity

n∑
k=0

(
K

k

)(
N −K

n− k

)
=

(
N

n

)
. (1)

Note that if instead we draw the balls with replacement, the distribution of random variable Y mea-

suring the same quantity (number of black balls drawn) will be Bin(n,K/N), i.e.,

pY (k) =

(
n

k

)(
K

N

)k (
1− K

N

)n−k

.

This is a much more easy-to-handle expression than (1), and not too different in value in most cases.

We therefore will try to replace the hypergeometric model with the binomial one whenever we can.

Example 7 (Poisson distribution) Let λ > 0 be a real number. Define the Poisson distribution

Pois(λ) to be the probability function P on {0, 1, 2, . . . , } defined via

P({k}) = e−λ · λ
k

k!
.

Note that this indeed defines a probability function, as

∞∑
k=0

e−λ · λ
k

k!
= e−λ

∞∑
k=0

λk

k!
= e−λ · eλ = 1.
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Unlike in the previous examples there is no completely obvious way of exhibiting a Poisson random

variable in a simple coin or urn experiment. However, Poisson random variables are ubiquitous in

Nature, as we shall see shortly.

Theorem 2 (Poisson approximation of the binomial distribution) Let λ > 0 be fixed and for

every n ∈ N ∩ (λ,∞) let Xn ∼ Bin(n, λ/n). Then for any fixed k ∈ {0, 1, 2, . . . } we have

lim
n→∞

P(Xn = k) = e−λλ
k

k!
.

Proof Using that (for k fixed and n → ∞) we have
(
n
k

)
= (1 + o(1))n

k

k! , (1 − λ/n)k → 1 and

(1− λ/n)n → e−λ, we obtain

P(Xn = k) =

(
n

k

)(
λ

n

)k (
1− λ

n

)n−k

= (1 + o(1))
nk

k!

λk

nk

(
1− λ

n

)n

= (1 + o(1))
λk

k!

(
1− λ

n

)n

= (1 + o(1))
λk

k!
e−λ
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So, suppose now that we want to estimate X, the number of meteorites (say, of minimum size 1 cubic

meter) hitting our planet within a year (time interval T ). To simulate this, it makes sense to discretize

the model by dividing T into a large number of n equal subintervals T1, . . . , Tn. Since n is large we may

further assume that in each Ti there will be at most 1 meteorite impact (a higher number is extremely

unlikely). This gives an approximation of X by a binomial random variable Xn ∼ Bin(n, pn) where

pn is unknown. However, since the average total number of impacts6 in the n-th discretization is npn,

and in the long run it should not depend on n (since we approach X as n → ∞), we arrive at the

conclusion that pn = λ/n where λ is the ‘intensity parameter’ - the average number of impacts per

year. By Theorem 2 this will give X ∼ Pois(λ), and this is indeed what often happens in practice.

6We will formalize this in the next lecture
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