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Lecture 2 - Conditional probabilities. Independence of events.

We want to study interactions between events and their probabilities.

Definition 1 (Conditional probability) Let (Ω,F ,P) be a probability space. Let A,B ∈ F be

events with P(B) > 0. We define the probability of A conditioned on B as

P(A | B) :=
P(A ∩B)

P(B)
.

Remark 1 If B is fixed and for all A ∈ F we define P̃(A) = P(A | B) then (Ω,F , P̃) defines a

probability space.

Exercise 1 Prove it.

Example 1 To model a roll of two dice1, we put Ω = [6]2,F = 2Ω, and P = Unif(Ω) – the uniform

measure. Let A be the event “The sum the numbers rolled is 8” and let B be the event “the first

number is a prime”. Then P(A) = 5/36, P(B) = 1/2 and P(A ∩B) = 1/12, so

P(A | B) =
1

6
and P(B | A) =

3

5
.

Definition 2 Two events A,B ∈ F are called independent if P(A ∩B) = P(A) · P(B). Equivalently,

assuming P(B) ̸= 0, A and B are independent if2 P(A | B) = P(A).

Independence of events often occurs when one would naturally expect it, for instance when consid-

ering multiple coin tosses or rolls of dice. Sometimes however, we have independence where ‘causal

independence’ is not apparent.

Example 2 Consider the probability space of Example 1. Let A be the event “The first roll is a 1”

and let B be “the sum of the numbers is 7”. Then A and B are independent.

Theorem 1 (Chain rule) Let (Ω,F ,P) be a probability space and let A1, . . . , An ∈ F be events with

P(
⋂n−1

i=1 Ai) > 0. Then

P(
n⋂

i=1

Ai) = P(A1) · P(A2 | A1) · P(A3 | A1 ∩A2) · · ·P(An |
n−1⋂
i=1

Ai).

1[n] will denote the set {1, . . . , n}
2Or, symmetrically, assuming P(A) ̸= 0, if P(B | A) = P(B)
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Proof Using the definition of conditional probability the above right hand side can be expressed as

P(A1) ·
P(A1 ∩A2)

P(A1)
· P(A1 ∩A2 ∩A3)

P(A1 ∩A2)
· P(A1 ∩ · · · ∩An)

P(A1 ∩ · · · ∩An−1)
,

which telescopes to P(
⋂n

i=1Ai). 2

The chain rule is an excellent tool to deal with iterated random experiments, when conditional prob-

abilities present themselves naturally.

Example 3 We draw 3 cards from a standard deck of 52 cards, without replacement. [Exercise:

define an appropriate probability space]. Let A be the event that no ‘hearts’ card was drawn. Then

A = A1 ∩ A2 ∩ A3 where each Ai is the event “the i-th card drawn was not hearts”. So, by the chain

rule,

P(A) = P(A1 ∩A2 ∩A3) = P(A1) · P(A2 | A1) · P(A3 | A1 ∩A2) =
39

52
· 38
51

· 37
50

.

Theorem 2 (Law of total probability) Let (Ω,F ,P) be a probability space and let {B1, B2, . . . }
be a finite or countably infinite collection of events forming a partition of Ω, i.e.

⋃
iBi = Ω and

Bi ∩Bj = ∅ for all i ̸= j. Suppose further that P(Bi) > 0 for all i. Then for any A ∈ F we have

P(A) =
∑
i

P(A | Bi)P(Bi).

Proof Since the sets A∩Bi form a partition of A, using σ-additivity and the definition of conditional

probability we obtain

P(A) =
∑
i

P(A ∩Bi) =
∑
i

P(A | Bi)P(Bi).
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Corollary 1 Let B be event with 0 < P(B) < 1, and B = Ω \ B be its complement. Then for any

event A we have

P(A) = P(A | B)P(B) + P(A | B)P(B).

As an application, let us consider a famous question in probability theory, the so-called gambler’s ruin

problem, also known as the symmetric random walk on a path graph.

We have two players, A and B, who have initial capitals of a and b Czech crowns, respectively. The

game is played in rounds. In each round a fair coin is tossed. If it comes up ‘heads’, A receives 1

crown from B, and if ‘tails’, B receives 1 crown from A. The game continues until one of the players

has no money left. That player has lost the game. What are the probabilities of each of the three

possible outcomes of the game: player A wins / player B wins / the game lasts forever?

To model the game, we take Ω = {−1, 1}N. Each ω ∈ Ω is an infinite sequence of −1’s and 1’s,

representing the outcome of an infinite sequence of coin tosses (1 is ‘heads’ and −1 is ‘tails’). We take3

F = 2Ω, and the probability function P is defined to satisfy

P(ω begins with S) = 2−|S|

3Not quite, because Ω is uncountable, but let us work under this simplified assumption.

2



for any finite string of ±1’s (|S| stands for the length of S). It is possible to extend this function to

F essentially uniquely.

Now, for each integer t with 0 ≤ t ≤ a+ b let At be the event4 “player A wins the game starting with

a capital of t against player B with a capital of a + b − t”. Note that P(A0) = 0 and P(Aa+b = 1).

Let C be the event that the first coin toss is ‘heads’. Then, by the law of total probability, for all

0 < t < a+ b we have

P(At) = P(At | C)P(C) + P(At | C)P(C) = P(At | C) · 1
2
+ P(At | C) · 1

2

=
P(At+1) + P(At−1)

2
.

The last step is justified by the fact that, if the first toss is ‘heads’, player A will have a capital of

t+ 1 vs. B with a capital of a+ b− t− 1, so A would have to win the game under the conditions of

At+1 (as the game has no ‘memory’). And similarly if the first toss is ‘tails’.

Put pt := P(At). Then p0 = 0, pa+b = 1, and pt = (pt+1 + pt−1)/2 for all 0 < t < a+ b. Resolving this

system of linear equations yields pt = t/(a+ b) for all 0 ≤ t ≤ a+ b. In particular,

pa =
a

a+ b
and pb =

b

a+ b
,

resulting5 in the answer to the original question: the probability that player A wins is a/(a+ b), that

of player B winning is b/(a+ b), and that the game lasts forever is 0.

The next theorem involving conditional probabilities is of great practical importance.

Theorem 3 (Bayes’ rule) Let (Ω,F ,P) be a probability space, and let B1, B2 . . . be a finite or count-

ably infinite collection of events, forming a partition of Ω, and with P(Bi) > 0 for all i. Let A be an

event with P(A) > 0. Then for each j we have:

P(Bj | A) =
P(A | Bj)P(Bj)

P(A)
=

P(A | Bj)P(Bj)∑
i P(A | Bi)P(Bi)

.

Proof We have

P(Bj | A)P(A) = P(Bj ∩A) = P(A | Bj)P(Bj),

proving the first identity. The second one follows by the law of total probability. 2

An interpretation of the Bayes rule is as follows. B1, B2, . . . are hidden states of the world. The

probabilities P(Bi) are our prior theory about the world. The event A is a new observation. The

conditional probabilities P(A | Bj) are the prior theory about the observation, and the conditional

probabilities P(Bj | A) constitute an updated theory, based on the observation.

Example 4 A genetic test aims to detect a certain genetic defect. It is known that 1% of people have

the defect. In those people the test detects it with probability 90% (true positives). In people who do not

have the defect, the test ‘detects’ it with probability 9.6% (false positives). If a person gets a positive

test result, what are the odds they actually have the genetic defect?

4Harder exercise: Formalize it as a property of ±1-strings
5By definition, pb is the probability of A winning with capital b against B with capital a, but swapping the names, it

is the same as B winning with capital b vs A with capital a.
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With A: “test is positive”, and B: “the person has the defect”, Bayes’ formula gives:

P(B | A) =
P(A | B)P(B)

P(A | B)P(B) + P(A | B)P(B)
=

0.9 · 0.01
0.9 · 0.01 + 0.096 · 0.99

which is about 8.65%.

Let us now define independence of events in more generality.

Definition 3 The events {Ai : i ∈ I} (I is a set of indices, possibly infinite) are called (mutually)

independent if for every finite J ⊆ I we have

P(
⋂
j∈J

Aj) =
∏
j∈J

P(Aj).

Note that for |I| = 2 this corresponds to our previous definition. In general, however, mutual inde-

pendence is a stronger property than pairwise independence.

Example 5 Two dice are thrown.

Event A: “the first roll a 1”.

Event B: “the second roll a 1”.

Event C: “the sum of the two rolls is 7.

These three events are not independent, but any two of them are.
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