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Mykhaylo Tyomkyn

Lecture 14 - Linear regression.

Given n data points (x;,y;): @ = 1,...n, suppose we are tasked with inferring a linear relationship
between the two underlying random variables X and Y. That is, we suspect that (informally)

Y =60y + 6:X + “Noise”,

and we need to estimate 0y and 6;. One common way of doing so the Least squares method: take bo
and 6 achieving the minimu

min (yi — 0o — O12)2. (1)
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This is not only good intuitively, but also has the following theoretical explanation. It is a common
scenario that the “noise” is Gaussian. That is, we have
Y=0+0X+W,

where W ~ N(0,0?) for some (typically unknown) ¢ > 0 and X and W are independent. The
corresponding likelihood function is

L(xvyae()?elao—) = (

oV 2

>n exXp (—2}‘2 Z(yz — (90 — 91.%'1')2> . (2)

Taking logs, we see that maximizing L amounts (for any o) to minimizing Y« (y; — o — 612;)?, which
is exactly .

Tmage: Sewaqu, Public domain, via Wikimedia Commons https://commons.wikimedia.org/w/index.php?curid=
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In order to solve , we take partial derivatives and equate them to 0. With f(6p,61) = > 7 (yi —

o — 017;)? we obtain
af n n
90, nbo + 1(;90 ) ;y
resulting in
b =y — bh1z, (3)

where Z = (1 + -+ xy,)/n and § = (y1 + - -+ + yn)/n. Using this and taking the partial derivative
with respect to 6 yields

o i Ty —nxy 3o (v — 2)(yi — 9)
b= > e 13%2 —nz? Yoy —2)2 )

Let us now give a broader interpretation of the rationale behind the least squares method and the
resulting estimators. Assume, as before, that

Y =0+ 0, X + W,

where E(W) = 0 and W is independent of X, but let us no longer assume that W is Gaussian. Then,
taking expectations,
E(Y) =6y + 6, E(X) + 0,

6o = E(Y) — 6,E(X). (5)

So, heuristically, estimating E(X), E(Y) and 6; by X,,, ¥;, and 6; (an estimator for 6y, to be defined),
respectively, would make a plausible estimator of 6.

What about él? We claim that

9, — Cov(X,Y) E(XY)-EX)E®Y) (©)
YT Var(X) T E(X?)-E(X)?
Indeed, we may assurneﬂ that E(X) = 0. Recalling that also E(W) = 0, we are claiming that
_ E(XY)
0, = XD (7)

On the other hand, we know that
XY = 600X +6, X%+ XW,

E(XY) = 6E(X) + 91E(X2) +E(X)E(W) = 6,E(X?),

implying @ So, estimating Cov(X,Y) and Var(X) in |§| by their empirical counterparts Yoy (s —
z)(y; — y) and Y. | (v; — Z)?, respectively, results in the estimator 6 as in

2Can you see why? Hint: Cov(X +¢,Y) = Cov(X,Y) and Var(X + ¢) = Var(X) for any constant c.



Let us now go back to the Gaussian noise model: W ~ AN(0,02). The MLE for the “noise” o is

obtained by from ([2)):
Olog L 1< 9 n
do <a3 Z_fyi = %0 = b12:) ) .0

This gives

Z(yi — o — 91%)2,
i=1

S

where é() and 0y are the least squares estimators from and .

Linear regression is to be applied with caution. Simpson’s paradox: an attempt to infer a linear
dependency between X : time spent studying for an exam, and Y : the exam grade, may result in a
negative slope (the less you study the better you do in the exam) if one accidentally mixes two classes
of different difficulties. [

3Image: Schutz, Public domain, via Wikimedia Commons https://commons.wikimedia.org/w/index.php?curid=
2240877
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