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Lecture 14 - Linear regression.

Given n data points (xi, yi) : i = 1, . . . n, suppose we are tasked with inferring a linear relationship

between the two underlying random variables X and Y . That is, we suspect that (informally)

Y = θ0 + θ1X + “Noise”,

and we need to estimate θ0 and θ1. One common way of doing so the Least squares method : take θ̂0
and θ̂1 achieving the minimum1

min
θ0,θ1

n∑
i=1

(yi − θ0 − θ1xi)
2. (1)

This is not only good intuitively, but also has the following theoretical explanation. It is a common

scenario that the “noise” is Gaussian. That is, we have

Y = θ0 + θ1X +W,

where W ∼ N(0, σ2) for some (typically unknown) σ > 0 and X and W are independent. The

corresponding likelihood function is

L(x, y, θ0, θ1, σ) =

(
1

σ
√
2π

)n

exp

(
− 1

2σ2

n∑
i=1

(yi − θ0 − θ1xi)
2

)
. (2)

Taking logs, we see that maximizing L amounts (for any σ) to minimizing
∑n

i=1(yi−θ0−θ1xi)
2, which

is exactly (1).

1Image: Sewaqu, Public domain, via Wikimedia Commons https://commons.wikimedia.org/w/index.php?curid=

11967659
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In order to solve (1), we take partial derivatives and equate them to 0. With f(θ0, θ1) =
∑n

i=1(yi −
θ0 − θ1xi)

2 we obtain

∂f

∂θ0
= 2nθ0 + 2θ1(

n∑
i=1

xi)− 2

n∑
i=1

yi = 0,

resulting in

θ̂0 = ȳ − θ̂1x̄, (3)

where x̄ = (x1 + · · · + xn)/n and ȳ = (y1 + · · · + yn)/n. Using this and taking the partial derivative

with respect to θ1 yields

θ̂1 =

∑n
i=1 xiyi − nx̄ȳ∑n
i=1 x

2
i − nx̄2

=

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
. (4)

Let us now give a broader interpretation of the rationale behind the least squares method and the

resulting estimators. Assume, as before, that

Y = θ0 + θ1X +W,

where E(W ) = 0 and W is independent of X, but let us no longer assume that W is Gaussian. Then,

taking expectations,

E(Y ) = θ0 + θ1E(X) + 0,

so

θ0 = E(Y )− θ1E(X). (5)

So, heuristically, estimating E(X), E(Y ) and θ1 by X̄n, Ȳn and θ̂1 (an estimator for θ1, to be defined),

respectively, would make (3) a plausible estimator of θ0.

What about θ̂1? We claim that

θ1 =
Cov(X,Y )

V ar(X)
=

E(XY )− E(X)E(Y )

E(X2)− E(X)2
. (6)

Indeed, we may assume2 that E(X) = 0. Recalling that also E(W ) = 0, we are claiming that

θ1 =
E(XY )

E(X2)
. (7)

On the other hand, we know that

XY = θ0X + θ1X
2 +XW,

so

E(XY ) = θ0E(X) + θ1E(X2) + E(X)E(W )
(5)
= θ1E(X2),

implying (7). So, estimating Cov(X,Y ) and V ar(X) in 6 by their empirical counterparts
∑n

i=1(xi −
x̄)(yi − ȳ) and

∑n
i=1(xi − x̄)2, respectively, results in the estimator θ̂1 as in (4).

2Can you see why? Hint: Cov(X + c, Y ) = Cov(X,Y ) and V ar(X + c) = V ar(X) for any constant c.
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Let us now go back to the Gaussian noise model: W ∼ N (0, σ2). The MLE for the “noise” σ is

obtained by from (2):

∂ logL

∂σ
=

(
1

σ3

n∑
i=1

(yi − θ0 − θ1xi)
2

)
− n

σ
= 0.

This gives

σ̂ =

√√√√ 1

n

n∑
i=1

(yi − θ̂0 − θ̂1xi)2,

where θ̂0 and θ̂1 are the least squares estimators from (3) and (4).

Linear regression is to be applied with caution. Simpson’s paradox: an attempt to infer a linear

dependency between X : time spent studying for an exam, and Y : the exam grade, may result in a

negative slope (the less you study the better you do in the exam) if one accidentally mixes two classes

of different difficulties. 3

3Image: Schutz, Public domain, via Wikimedia Commons https://commons.wikimedia.org/w/index.php?curid=

2240877
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