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Lecture 13 - Hypothesis testing.

Definition 1 (Simple/Composite hypothesis) If |Θ0| = 1, that is, when H0 is a single distribu-

tion, we say that the null-hypothesis is simple. Similarly if |Θ1| = 1 we say that the alternative is

simple. A hypothesis that is not simple is called composite. If both H0 and H1 are simple, we refer to

this as simple binary hypothesis testing.

Note that in the latter setting α and β are simply the probabilities of “making the wrong choice” under

H0 and H1 respectively. In particular, β can be viewed as a single number, rather than a function.

Example 1 Consider H0 : X ∼ N (0, 1) and H1 : X ∼ N (1, 1). Fix a confidence level 1 − α. An

intuitively sensible decision rule would be to take the test statistic

h(X1, . . . , Xn) = Sn =
n∑

i=1

Xi,

and the rejection region W = [ξ,∞), for some ξ = ξ(α, n). That is, we opt for H1 if and only if

n∑
i=1

Xi ≥ ξ.

To determine ξ we recall that, by the convolution formula, Sn ∼ N (0, n), and then use the normal

tables to determine ξ such that1

PH0(Sn ≥ ξ) = α.

After this, we use the normal tables again in order to compute

β = PH1(Sn < ξ).

Example 2 Consider H0 ∼ N (0, 1) and H1 ∼ N (0, 4). Here a reasonable approach would be to take

h(X1, . . . , Xn) =
n∑

i=1

X2
i ,

and W = [ξ′,∞) for some ξ′ = ξ′(α, n).

It turns out that we can use the likelihood functions, defined when dealing with estimators, to design

good hypothesis tests.

1Exercise: do this for α = 0.05. Be careful: how does the answer scale with n?
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Definition 2 (Likelihood ratio, likelihood-ratio test) Suppose H0 and H1 are simple and that

the underlying distributions Pϑ0 and Pϑ1 both have pmf’s or pdf’s. The likelihood ratio is a function

L : Rn → R,

L(x) =
L(x, ϑ1)

L(x, ϑ0)
,

where L(x, ϑ) is the likelihood function. A likelihood-ratio test rejects H0 if and only if L(X) ≥ ξ for

ξ = ξ(α, n).

Example 3 Consider again Example 1. For x = (x1, . . . , xn) we have

L(x) =
(1/

√
2π)n exp

(
−
∑n

i=1(xi − 1)2/2
)

(1/
√
2π)n exp

(
−
∑n

i=1 x
2
i /2

) ,

which is at least ξ if and only if x1 + · · ·+ xn ≥ ξ′ for an appropriately chosen ξ′ = ξ′(α, n).

Exercise 1 Verify that the test described in Example 2 is also a likelihood-ratio test.

It turns out that in many scenarios a likelihood-ratio test is optimal.

Definition 3 (Uniformly most powerful test (UMP)) A uniformly most powerful test (UMP)

for simple binary hypothesis testing is a test that has the greatest power 1− β among all tests with a

given α.

Theorem 1 (Neyman-Pearson lemma) Suppose H0 and H1 are simple and that the underlying

distributions Pϑ0 and Pϑ1 both have pmf’s or pdf’s. Then for any α ∈ (0, 1) there exists an (essentially)

unique UMP among tests of significance level α, and it is a likelihood-ratio test.

Let us now move on to studying tests with composite hypotheses.

How would we test if a coin is fair (H0 : X ∼ Bern(1/2), H1 : X ∼ Bern(p), p ̸= 1/2)? One natural

method would be to use the test statistic Sn =
∑n

i=1Xi and reject H0 if and only if |Sn − n/2| > ξ

for some ξ = ξ(α, n). Let us say, we have n = 500 and α = 0.05. Then, using CLT and the normal

tables, we obtain

Pp=1/2(|S − 500| ≤ 31) ≈ 0.95,

so we take ξ = 31. But what instead of the coin we had a die; how would we test, whether it is fair?

More broadly, let us consider the ‘generalized die’, which has k possible outcomes a1 . . . , ak. Our

null-hypothesis H0 is that P(ai) = pi for all 1 ≤ i ≤ k (where p1 + · · · + pk = 1), while H1 is “not

H0”. Given a sample of size n, let Ni be the number of observed occurrences of outcome ai among

X1, . . . , Xn (the “histogram” of our sample). The chi-square goodness of fit test uses the test statistic

T =

k∑
i=1

(Ni − npi)
2

npi
,

to test H0 against H1. The null-hypothesis H0 is rejected if and only if T > ξ, where ξ = ξ(α, n) is

chosen to satisfy

PH0(T > ξ) = α.

How to find ξ is described below.
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Lemma 1 Given independent N (0, 1)-variables X1, . . . , Xn, the random variable Y = X2
1 + · · ·+X2

n

satisfies Y ∼ Γ(1/2, n/2). That is, it has the pdf

fY (y) =
yn/2−1e−y/2

Γ(n/2)2n/2
.

Proof (sketch). First, by considering the cdf and differentiating it, one shows that for X ∼ N (0, 1)

we have X2 ∼ Γ(1/2, 1/2) (note that Γ(1/2) =
√
π). This proves the lemma statement for n = 1. By

the convolution formula for the Gamma distribution,

Γ(λ, r) ∗ Γ(λ, s) = Γ(λ, r + s),

and the general statement follows. 2

Definition 4 The chi-square distribution with m degrees of freedom, denoted χ2
m, is the distribution

Γ(1/2,m/2).

Its values, for various m, are well-documented in tables.

Fact 1 For large n, under assumption of H0 above, the test statistic T has, approximately, the distri-

bution χ2
k−1.

Example 4 Let us illustrate the above with a standard 6-sided die (so we have k = 6), and let

α = 0.05. Suppose that we have thrown it n = 600 times and obtained the following histogram

i 1 2 3 4 5 6

Ni 92 120 88 98 95 107

We calculate

T (x1, . . . , x600) =
6∑

i=1

(Ni − 100)2

100
=

1

100
(82 + 202 + 122 + 22 + 52 + 72) = 6.86.

Let F be the cdf of χ5
2. From the tables we find that F−1(0.95) = 11.1 > 6.86, so here we would accept

H0. Moreover, also from the tables we can see that

PH0(T ≥ 6.86) = 1− F (6.86) = 0.23.

So, informally, under H0 we would obtain a result ‘at least as extreme as this” 23% of the time. We

say that 0.23 is the p-value of the given experiment and sample.

Be careful: one possible misuse of statistical analysis is the so-called p-hacking, that is, conducting

the experiment without fixing α in advance, and then declaring α to be the p-value of the sample.
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Let us now consider another non-parametric example, the Permutation test. Suppose we are testing

a new medication, and have two groups of participants - the first group receive the drug, the second

receive the placebo. We want to find out if the drug has any effect on the recovery time. Formally,

we have two samples X1, . . . , Xn ∼ P and Y1, . . . , Ym ∼ P′, and the null-hypothesis is H0 : P = P′ and

H1 : “not H0”. For simplicity, assume that P is discrete 2. Note that we are not making any further

assumptions about the distributions. Moreover, P and P′ are unknown to us.

Let us choose a test statistic, for example

T (X1, . . . , Xn, Y1, . . . , Ym) = |X̄n − Ȳm|,

and note that, under H0 this value should be small, so we are aiming for a rejection region W = [w,∞)

with an appropriately chosen w.

Observe that,by the mutual independence, given a realization of the sample (x1, . . . , xn, y1, . . . , ym),

for any permutation σ of its values, we have

P(X1 = σ(x1), . . . , Xn = σ(xn), Y1 = σ(y1), . . . , Ym = σ(ym)) = P(X1 = x1, . . . , Xn = xn, Y1 = y1, . . . , Ym = ym).

Now we compute T (σ(x1), . . . , σ(xn), σ(y1), . . . , σ(ym)) each of (n+m)! possible permutations σ, and

arrange the resulting values in descending order:

t1 ≥ t2 ≥ · · · ≥ t(m+n)!.

So, we can pick a = ⌊α · (m+ n)!⌋ and w = ta. We have

P(H0 falsely rejected | (X1, . . . , Ym) is a permutation of (x1, . . . , ym)) =
a

(m+ n)!
.

Since this holds for all possible instances of (x1, . . . , ym), by the law of total probability we obtain

P(H0 falsely rejected) =
a

(m+ n)!
≈ α.

Example 5 Let α = 0.05, n = 3, m = 4, (x1, x2, x3) = (23, 33, 40) and (y1, y2, y3, y4) = (19, 22, 25, 26).

Then t = T (x1, . . . , y4) = 9, and, having compared the
(
7
3

)
= 35 values for all possible permutations 3

we obtain 9 is the third-largest. This would give the p-value of 3/35 ≈ 8.6%, and since this is larger

than α = 5%, we accept H0.

2the method also works for continuous measures, as they can be approximated by discrete ones.
3There are 7! = 5040 permutations in total, but the value of any two will coincide if between them we only permute

the first 3 and the last 4 entries
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