NMAI059 – Probability and Statistics 1

Mykhaylo Tyomkyn

Lecture 12 - Confidence intervals. Introduction to Hypothesis testing.

In practice we often want, instead of a 'point estimate' for ϑ or a function $f(\vartheta)$, to give an interval $[\Theta^+, \Theta^-]$ such that $f(\vartheta) \in [\Theta^+, \Theta^-]$ 'with a high degree of confidence''.

Definition 1 (Confidence interval) Let $0 < \alpha < 1$.¹ Given a parametric model,² a pair of statistics $\widehat{\Theta}^-$ and $\widehat{\Theta}^+$, with $\widehat{\Theta}^- \leq \widehat{\Theta}^+$ describe a $1 - \alpha$ confidence interval for a function $f(\vartheta)$ if

$$\mathbb{P}_{\vartheta}(\widehat{\Theta}^{-} \le f(\vartheta) \le \widehat{\Theta}^{+}) \ge 1 - \alpha$$

for every $\vartheta \in \Theta$.

An interpretation: We cannot make a statement like: " $f(\vartheta) \in [\widehat{\Theta}^-, \widehat{\Theta}^+]$ with probability 95%". This simply does not make any sense, since there is no underlying probability space. Instead, what we want to say is: "Whatever the true probability measure is, our estimated interval $[\widehat{\Theta}^-, \widehat{\Theta}^+]$ will contain $f(\vartheta)$ at least 95% of the time we sample."

Example 1 Assume $X \sim \mathcal{N}(\mu, \sigma^2)$ where σ^2 is known and $\vartheta = \mu$ is unknown (e.g. we measure the room temperature μ , and σ^2 is a known property of the thermometer). Fix $\alpha \in (0, 1)$. Put

$$z_{\alpha/2} = \Phi^{-1}(1 - \alpha/2),$$

where, as usual, Φ is the cdf of $\mathcal{N}(0,1)$ and Φ^{-1} is its (uniquely defined) inverse function: $\Phi(\Phi^{-1}(x)) = \Phi^{-1}(\Phi(x)) = x$ for all $x \in \mathbb{R}$. Note that $1 - \alpha/2 \ge 1/2$, implying $z_{\alpha/2} > 0$. Now we define

$$\widehat{\Theta}^- = \bar{X}_n - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \quad \widehat{\Theta}^+ = \bar{X}_n + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

and claim that $[\widehat{\Theta}^-, \ \widehat{\Theta}^+]$ is a $1 - \alpha$ confidence interval for μ . Indeed,

$$\mathbb{P}_{\mu}\left(\left|\bar{X}_{n}-\mu\right| \leq z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right) = \mathbb{P}_{\mu}\left(\left|\frac{\bar{X}_{n}-\mu}{\sigma/\sqrt{n}}\right| \leq z_{\alpha/2}\right).$$

Noting that

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \sim \mathcal{N}(\mu, \frac{\sigma^2}{n}),$$

and $Y = \frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1)$, we obtain

$$\mathbb{P}_{\mu}\left(\left|\frac{\bar{X}_{n}-\mu}{\sigma/\sqrt{n}}\right| \le z_{\alpha/2}\right) = \mathbb{P}(-z_{\alpha/2} \le Y \le z_{\alpha/2}) = \Phi(z_{\alpha/2}) - \Phi(-z_{\alpha/2}).$$

¹Typically α is small. Very often we shall use $\alpha = 0.05$.

²This can be extended to non-parametric models in the usual way

The symmetry of the normal distribution implies $\Phi(x) + \Phi(-x) = 1$ for all x, and therefore

$$\Phi(z_{\alpha/2}) - \Phi(-z_{\alpha/2}) = 2\Phi(z_{\alpha/2}) - 1 = 2(1 - \alpha/2) - 1 = 1 - \alpha.$$

What if X is no longer assumed to be normally distributed, and, as previously, $\sigma = \operatorname{Var}(X)$ is known and $\mu = \mathbb{E}(X)$ is unknown? For large n the same interval as above will yield asymptotically a $1 - \alpha$ confidence interval for μ . This is because of CLT:

$$\lim_{n \to \infty} \mathbb{P}_{\vartheta}(-z_{\alpha/2} \le \frac{X_n - \mu}{\sigma/\sqrt{n}} \le z_{\alpha/2}) = \Phi(z_{\alpha/2}) - \Phi(-z_{\alpha/2}) = 1 - \alpha.$$

Now, how to design a confidence interval for μ in the normal model if both μ and σ are unknown?

Fact 1 (Student's t-distribution) If X_1, \ldots, X_n are independent $\mathcal{N}(\mu, \sigma^2)$ variables then

$$Y_n = \frac{X_n - \mu}{\sqrt{\hat{S}_n^2}/\sqrt{n}}$$

is distributed with the so-called Student's t-distribution with n-1 degrees of freedom, characterized by the pdf

$$f_{Y_n}(y) = \frac{\Gamma(\frac{n}{2})}{\sqrt{(n+1)\pi}\Gamma(\frac{n-1}{2})} \left(1 + \frac{y^2}{n-1}\right)^{-n/2}$$

Its cdf is denoted Ψ_{n-1} , and is numerically well-understood (tables). Moreover, we have $\mathbb{E}(Y_n) = 0$,

$$\operatorname{Var}(Y_n) = \begin{cases} \frac{n-1}{n-3}, & n \ge 4\\ \infty, & n \le 3 \end{cases}$$

and $Y_n \xrightarrow{\mathcal{L}} \mathcal{N}(0,1)$.

Example 2 Assume $X \sim \mathcal{N}(\mu, \sigma^2)$, where both μ and σ are unknown, and let $\alpha \in (0, 1)$. Put

$$t_{\alpha/2} = \Psi_{n-1}^{-1} (1 - \alpha/2),$$

and for $n \ge 4$ samples we set

$$\widehat{\Theta}^{-} = \bar{X}_n - t_{\alpha/2} \frac{\sqrt{\hat{S}_n^2}}{\sqrt{n}}, \qquad \widehat{\Theta}^{+} = \bar{X}_n + t_{\alpha/2} \frac{\sqrt{\hat{S}_n^2}}{\sqrt{n}}.$$

This gives a $1 - \alpha$ confidence interval for μ . The proof is the same as in Example 1, with Φ replaced everywhere by Ψ (due to Fact 1).

Note that, because of $Y_n \xrightarrow{\mathcal{L}} \mathcal{N}(0,1)$, for very large n we would not be too wrong also using Φ here.

Let us now study the confidence intervals in the non-parametric setting. Suppose that all we know about the distribution of X is that it is continuous, and in particular,

$$\mathbb{P}(\bigcup_{i\neq j} \{X_i = X_j\}) = 0.$$

in other words, no two values of the samples will coincide, a.s. In this situation we cannot expect to produce a reliable confidence interval for the mean, as the distribution could have 'heavy tails', i.e., deviate from the mean in both directions, with a large probability. We can, however, give a confidence interval for the *median*, that is, the value $m = F_X^{-1}(1/2)$ (satisfying $\mathbb{P}(X > m) = \mathbb{P}(X < m) = 1/2$). To do so, we use an *order statistic*.

Definition 2 (Order statistic) The k-th order statistic of the statistical sample X_1, \ldots, X_n is the k-th smallest value among X_1, \ldots, X_n , and is denoted by $X_{(k)}$.

In particular, $X_{(1)} = \min\{X_1, \dots, X_n\}$ and $X_{(n)} = \max\{X_1, \dots, X_n\}$.

Theorem 1 Given n and $0 < \alpha < 1$, and let k be the largest integer with

$$F_Y(k-1) \le \alpha/2,$$

where $Y \sim Bin(n, 1/2)$. Then $[X_{(k)}, X_{(n-k+1)}]$ defines a $1 - \alpha$ confidence interval for the median $m = m(\mathbb{P})$.

Proof For every $\mathbb{P} \in \mathcal{P}$ and every $1 \leq i \leq i$ we have $\mathbb{P}(X_i \leq m) = 1/2$, and these events are independent. Therefore, $Y = \sum_{i=1}^{n} \mathbb{1}_{\{X_i \leq m\}}$ is Bin(n, 1/2)-distributed, and we obtain

$$\mathbb{P}(m < X_{(k)}) = \mathbb{P}(Y \le k - 1) = F_Y(k - 1) \le \alpha/2.$$

And, by symmetry of the binomial distribution,

$$\mathbb{P}(m > X_{(n-k+1)}) = \mathbb{P}(Y \ge n-k+1) = \mathbb{P}(Y \le k-1)$$
$$= F_Y(k-1) \le \alpha/2.$$

In total,

$$\mathbb{P}(m \in [X_{(k)}, X_{(n-k+1)}]) = 1 - \mathbb{P}(m < X_{(k)}) - \mathbb{P}(m > X_{(n-k+1)})$$

$$\geq 1 - \alpha/2 - \alpha/2 = 1 - \alpha.$$

Remark 1 One can similarly determine confidence intervals for $F_X(t)$, for any fixed 0 < t < 1.

Let us now turn our attention to a third method of statistical inference, namely Hypothesis testing. Suppose we are investigating the bias of a coin. Quite often we have a suspicion, or a specific question we want to resolve/answer in a binary form. For example, we may want to decide if our coin is fair or not fair. Alternatively, if the coin is head-biased or tail-biased. Formally, we consider a statistical model $(\Omega, \mathcal{F}, \mathbb{P}_{\vartheta} : \vartheta \in \Theta)$, alongside a partition $\Theta = \Theta_0 \cup \Theta_1$ (disjoint subsets). The sets Θ_0 and Θ_1 are associated with the so-called *null hypothesis* (typically reflecting one's default assumption) and the *alternative*, respectively. We aim to decide whether H_0 or H_1 holds (accept or reject the null-hypothesis). Doing so we might commit two types of error.

- type I error: false rejection. H_0 was true, but we rejected it.
- type II error: false acceptance. H_0 was false, but we accepted it.

As before, we make our decision based on a sample of n iid variables $X_1, \ldots, X_n \sim \mathbb{P}_{\vartheta}$. A decision rule involves choosing

- The test statistic $S = h(X_1, \ldots, X_n)$, where $h : \mathbb{R}^n \to \mathbb{R}$ is a function.
- The rejection region $W \subseteq \mathbb{R}$.

We sample the values x_1, \ldots, x_n of X_1, \ldots, X_n and apply the decision rule: reject H_0 if $h(x_1, \ldots, x_n) \in W$ and accept H_0 otherwise.

The significance level of the test is defined as $1 - \alpha$, where

$$\alpha = \sup_{\vartheta \in \Theta_0} \mathbb{P}_{\vartheta}(S \in W)$$

That is, α is the maximal³ probability of a type I error. ⁴ The value α is typically set in advance as a requirement for the test.

The *power* of the test is defined as $1 - \beta(\vartheta)$, where $\beta : \Theta_1 \to [0, 1]$ is the function

$$\beta(\vartheta) = \mathbb{P}_{\vartheta}(S \notin W).$$

That is, $\beta(\vartheta)$ is the probability of a type II error, viewed as a function of $\vartheta \in \Theta_1$. Our goal is to design a test at significance level (at most) $1 - \alpha$, while minimizing the value(s) of β .

Remark 2 In practice, to avoid statistical malpractice, it is crucial that the decision rule be clearly formulated **before** conducting the sampling.

 $^{^3 {\}rm supremal}$ to be precise, but in practice the maximum is usually attained

⁴A very popular value is $\alpha = 0.05$