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Lecture 12 - Confidence intervals. Introduction to Hypothesis testing.

In practice we often want, instead of a ‘point estimate’ for ϑ or a function f(ϑ), to give an interval

[Θ+,Θ−] such that f(ϑ) ∈ [Θ+,Θ−] ‘with a high degree of confidence”.

Definition 1 (Confidence interval) Let 0 < α < 1.1 Given a parametric model,2 a pair of statistics

Θ̂− and Θ̂+, with Θ̂− ≤ Θ̂+ describe a 1− α confidence interval for a function f(ϑ) if

Pϑ(Θ̂
− ≤ f(ϑ) ≤ Θ̂+) ≥ 1− α

for every ϑ ∈ Θ.

An interpretation: We cannot make a statement like: “f(ϑ) ∈ [Θ̂−, Θ̂+] with probability 95%”. This

simply does not make any sense, since there is no underlying probability space. Instead, what we want

to say is: “Whatever the true probability measure is, our estimated interval [Θ̂−, Θ̂+] will contain

f(ϑ) at least 95% of the time we sample.”

Example 1 Assume X ∼ N (µ, σ2) where σ2 is known and ϑ = µ is unknown (e.g. we measure the

room temperature µ, and σ2 is a known property of the thermometer). Fix α ∈ (0, 1). Put

zα/2 = Φ−1(1− α/2),

where, as usual, Φ is the cdf of N (0, 1) and Φ−1 is its (uniquely defined) inverse function: Φ(Φ−1(x)) =

Φ−1(Φ(x)) = x for all x ∈ R. Note that 1− α/2 ≥ 1/2, implying zα/2 > 0. Now we define

Θ̂− = X̄n − zα/2
σ√
n
, Θ̂+ = X̄n + zα/2

σ√
n
,

and claim that [Θ̂−, Θ̂+] is a 1− α confidence interval for µ. Indeed,

Pµ

(
|X̄n − µ| ≤ zα/2

σ√
n

)
= Pµ

(∣∣∣∣X̄n − µ

σ/
√
n

∣∣∣∣ ≤ zα/2

)
.

Noting that

X̄n =
1

n

n∑
i=1

Xi ∼ N (µ,
σ2

n
),

and Y = X̄n−µ
σ/

√
n
∼ N (0, 1), we obtain

Pµ

(∣∣∣∣X̄n − µ

σ/
√
n

∣∣∣∣ ≤ zα/2

)
= P(−zα/2 ≤ Y ≤ zα/2) = Φ(zα/2)− Φ(−zα/2).

1Typically α is small. Very often we shall use α = 0.05.
2This can be extended to non-parametric models in the usual way
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The symmetry of the normal distribution implies Φ(x) + Φ(−x) = 1 for all x, and therefore

Φ(zα/2)− Φ(−zα/2) = 2Φ(zα/2)− 1 = 2(1− α/2)− 1 = 1− α.

What if X is no longer assumed to be normally distributed, and, as previously, σ = Var(X) is known

and µ = E(X) is unknown? For large n the same interval as above will yield asymptotically a 1 − α

confidence interval for µ. This is because of CLT:

lim
n→∞

Pϑ(−zα/2 ≤
X̄n − µ

σ/
√
n

≤ zα/2) = Φ(zα/2)− Φ(−zα/2) = 1− α.

Now, how to design a confidence interval for µ in the normal model if both µ and σ are unknown?

Fact 1 (Student’s t-distribution) If X1, . . . , Xn are independent N (µ, σ2) variables then

Yn =
X̄n − µ√
Ŝ2
n/

√
n

is distributed with the so-called Student’s t-distribution with n − 1 degrees of freedom, characterized

by the pdf

fYn(y) =
Γ(n2 )√

(n+ 1)πΓ(n−1
2 )

(
1 +

y2

n− 1

)−n/2

.

Its cdf is denoted Ψn−1, and is numerically well-understood (tables). Moreover, we have E(Yn) = 0,

Var(Yn) =

{
n−1
n−3 , n ≥ 4

∞, n ≤ 3

and Yn
L−→ N (0, 1).

Example 2 Assume X ∼ N (µ, σ2), where both µ and σ are unknown, and let α ∈ (0, 1). Put

tα/2 = Ψ−1
n−1(1− α/2),

and for n ≥ 4 samples we set

Θ̂− = X̄n − tα/2

√
Ŝ2
n√
n

, Θ̂+ = X̄n + tα/2

√
Ŝ2
n√
n

.

This gives a 1− α confidence interval for µ. The proof is the same as in Example 1, with Φ replaced

everywhere by Ψ (due to Fact 1).

Note that, because of Yn
L−→ N (0, 1), for very large n we would not be too wrong also using Φ here.
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Let us now study the confidence intervals in the non-parametric setting. Suppose that all we know

about the distribution of X is that it is continuous, and in particular,

P(
⋃
i ̸=j

{Xi = Xj}) = 0,

in other words, no two values of the samples will coincide, a.s. In this situation we cannot expect to

produce a reliable confidence interval for the mean, as the distribution could have ‘heavy tails’, i.e.,

deviate from the mean in both directions, with a large probability. We can, however, give a confidence

interval for the median, that is, the value m = F−1
X (1/2) (satisfying P(X > m) = P(X < m) = 1/2).

To do so, we use an order statistic.

Definition 2 (Order statistic) The k-th order statistic of the statistical sample X1, . . . , Xn is the

k-th smallest value among X1, . . . , Xn, and is denoted by X(k).

In particular, X(1) = min{X1, . . . , Xn} and X(n) = max{X1, . . . , Xn}.

Theorem 1 Given n and 0 < α < 1, and let k be the largest integer with

FY (k − 1) ≤ α/2,

where Y ∼ Bin(n, 1/2). Then [X(k), X(n−k+1)] defines a 1 − α confidence interval for the median

m = m(P).

Proof For every P ∈ P and every 1 ≤ i ≤ i we have P(Xi ≤ m) = 1/2, and these events are

independent. Therefore, Y =
∑n

i=1 1{Xi≤m} is Bin(n, 1/2)-distributed, and we obtain

P(m < X(k)) = P(Y ≤ k − 1) = FY (k − 1) ≤ α/2.

And, by symmetry of the binomial distribution,

P(m > X(n−k+1)) = P(Y ≥ n− k + 1) = P(Y ≤ k − 1)

= FY (k − 1) ≤ α/2.

In total,

P(m ∈ [X(k), X(n−k+1)]) = 1− P(m < X(k))− P(m > X(n−k+1))

≥ 1− α/2− α/2 = 1− α.

2

Remark 1 One can similarly determine confidence intervals for FX(t), for any fixed 0 < t < 1.

3



Let us now turn our attention to a third method of statistical inference, namely Hypothesis testing.

Suppose we are investigating the bias of a coin. Quite often we have a suspicion, or a specific question

we want to resolve/answer in a binary form. For example, we may want to decide if our coin is fair

or not fair. Alternatively, if the coin is head-biased or tail-biased. Formally, we consider a statistical

model (Ω,F ,Pϑ : ϑ ∈ Θ), alongside a partition Θ = Θ0 ∪ Θ1 (disjoint subsets). The sets Θ0 and

Θ1 are associated with the so-called null hypothesis (typically reflecting one’s default assumption)

and the alternative, respectively. We aim to decide whether H0 or H1 holds (accept or reject the

null-hypothesis). Doing so we might commit two types of error.

� type I error: false rejection. H0 was true, but we rejected it.

� type II error: false acceptance. H0 was false, but we accepted it.

As before, we make our decision based on a sample of n iid variables X1, . . . , Xn ∼ Pϑ. A decision

rule involves choosing

� The test statistic S = h(X1, . . . , Xn), where h : Rn → R is a function.

� The rejection region W ⊆ R.

We sample the values x1, . . . , xn of X1, . . . , Xn and apply the decision rule: reject H0 if h(x1, . . . , xn) ∈
W and accept H0 otherwise.

The significance level of the test is defined as 1− α, where

α = sup
ϑ∈Θ0

Pϑ(S ∈ W )

That is, α is the maximal3 probability of a type I error. 4 The value α is typically set in advance as

a requirement for the test.

The power of the test is defined as 1− β(ϑ), where β : Θ1 → [0, 1] is the function

β(ϑ) = Pϑ(S /∈ W ).

That is, β(ϑ) is the probability of a type II error, viewed as a function of ϑ ∈ Θ1.

Our goal is to design a test at significance level (at most) 1− α, while minimizing the value(s) of β.

Remark 2 In practice, to avoid statistical malpractice, it is crucial that the decision rule be clearly

formulated before conducting the sampling.

3supremal to be precise, but in practice the maximum is usually attained
4A very popular value is α = 0.05
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