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Lecture 11 - More on estimators.

In the previous lecture we saw two criteria of ‘goodness’ of an estimator: being consistent and being

(asymptotically) unbiased. Let us complete this discussion by introducing a third useful criterion, and

this time it is a quantitative one. Let us from now on assume that we work in a parametric model

(Ω,F ,Pϑ : ϑ ∈ Θ).

Definition 1 (Mean square error (MSE)) The mean square error (MSE) of an estimator T of

g(θ) is the function Θ → R defined as

MSEϑ(T ) = Eϑ((T − g(ϑ))2).

There is a useful alternative expression.

Lemma 1

MSEϑ(T ) = V arϑ(T ) + biasϑ(T )
2.

In particular, if T is unbiased, we have MSEϑ(T ) = V arϑ(T ).

Proof

MSEϑ(T ) = Eϑ((T − g(ϑ))2) = V arϑ(T − g(ϑ)) + (Eϑ(T − g(ϑ)))2 = V arϑ(T ) + biasϑ(T )
2,

where in the last step we used that, once ϑ has been fixed, g(ϑ) is just a constant, and so does not

affect the variance. 2

The goal, of course, is to try to minimize the mean square error. This provides us with a good criterion

for comparing different estimators.

Example 1 Let us deal again with an unknown coin X ∼ Bern(p). That is, Θ = [0, 1], p = ϑ, and

Pϑ = Bern(p). Note that we have p = E(X), and therefore a natural candidate for an estimator of

p = ϑ is the aforementioned empirical mean X̄n = 1
n(X1 + · · ·+Xn). Since it is unbiased, we have

MSEp(X̄n) = Varp(X̄n) =
V arp(X)

n
=

p(1− p)

n
.

Now, let us consider a different estimator, namely

Tn = Tn(X1, . . . , Xn) =
(
∑n

i=1Xi) + 1

n+ 2
=

nX̄n + 1

n+ 2
.
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Note that Tn ≥ X̄n if and only if X̄n ≤ 1/2, so, qualitatively speaking, “Tn pushes the estimate closer

to the middle of Θ = [0, 1]”. Now, let us compute the mean square error of Tn. We have

V arp(Tn) = V arp

(
nX̄n + 1

n+ 2

)
=

n2

(n+ 2)2
V arp(X̄n) =

np(1− p)

(n+ 2)2
,

and, by linearity of expectation,

biasp(Tn) = Ep(Tn − p) = Ep(Tn)− p = Ep

(
nX̄n + 1

n+ 2

)
− p =

np+ 1

n+ 2
− p =

1− 2p

n+ 2
.

So, we obtain

MSEp(Tn) = V arp(Tn) + biasp(Tn)
2 =

np(1− p) + (1− 2p)2

(n+ 2)2
.

Comparing the just computed values (and skipping a routine algebraic calculation) it turns out that

MSEp(Tn) ≤ MSEp(X̄n) for any n if |p − 1/2| ≤ 0.35. So, if we suspect the true value of p to be

close to 1/2, it might be advised to to use Tn instead of X̄n, even though the former is not unbiased.

Ultimately though, all criteria are subjective and should be applied according to the situation and our

preferences.

Now that we have formulated some properties and parameters of estimators, it is natural to ask how

to actually design a good estimator of ϑ in a parametric model. We present two approaches.

Definition 2 (Method of moments (MoM) estimator) In a parametric model with k parame-

ters1 (typically k = 1 or k = 2) and a sample of size n, the Method of moments is the rule to choose

the estimator ϑ̂ of ϑ satisfying for all j = 1, . . . , k the equations

Eϑ̂(X
j) =

1

n

n∑
i=1

Xj
i .

Example 2 (MoM estimator in the Bernoulli model) Let k = 1, Θ = [0, 1], and for ϑ = p, let

Pϑ = Bern(p). Note that p is also the expectation. Then the MoM estimator for p is obtained by

setting

p̂ = Ep̂(X) =
1

n

n∑
i=1

Xi = X̄n.

In other words, for k = 1 we infer ϑ from the (hypothetical) assumption that the sample mean is the

true mean. Note that, although X̄n is an unbiased estimator of µ, the resulting estimator for ϑ could

be biased.2

Example 3 (MoM estimator in the Gaussian model) Let k = 2, Θ = R × R+ and for ϑ =

(µ, ν), let Pϑ = N (µ, ν). Note that for X ∼ N (µ, ν) we have E(X) = µ and E(X2) = ν + µ2. So, we

use the ansatz

X̄n = µ̂ and
1

n

n∑
i=1

X2
i = ν̂ + µ̂2.

1Meaning Θ is k-dimensional, e.g. Θ = R× R+ and k = 2
2That said, under very mild additional assumptions the MoM estimators are consistent.
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From this we obtain

ν̂ =
1

n

n∑
i=1

X2
i − X̄2

n,

which can be re-written as3

ν̂ =
n∑

i=1

(Xi − X̄n)
2 = S̄2

n.

To summarize, the MoM estimator in the Gaussian model is (µ̂, ν̂) = (X̄n, S̄
2
n).

The second method of designing an estimator plays a fundamental role in Statistics.

Definition 3 (Likelihood function) In a parametric statistical model the likelihood-function L :

Rn × Θ → R is the joint pmf/pdf of X1, . . . , Xn, assuming X ∼ Pϑ. That is, with x = (x1, . . . , xn),

when X is discrete we have

L(x, ϑ) =
n∏

i=1

pX,ϑ(xi) =
n∏

i=1

Pϑ(Xi = xi),

and when X is continuous we have

L(x, ϑ) =
n∏

i=1

fX,ϑ(xi).

Definition 4 (Maximum likelihood estimator (MLE)) The Maximum likelihood estimator (MLE)

for ϑ is given by

ϑ̂ = max
ϑ∈Θ

L((X1, . . . , Xn), ϑ).

In other words, based on our sample, we choose ϑ that gives our sample the highest likelihood among

all possible choices of ϑ.

Example 4 (MLE in the Bernoulli model) Consider the Bernoulli model from Example 2. For

a vector x ∈ {0, 1} We have

L(x, p) = pℓ(1− p)n−ℓ,

where ℓ is the number of 1-coordinates of x. So, with a fixed parameter ℓ =
∑n

i=1Xi, we need to

maximize the function pℓ(1 − p)n−ℓ with respect to p. A helpful idea in this situation is to take the

logarithm4. Since log is a strictly monotone increasing function, the maxima of logL(x, ϑ) is attained

at exactly the same values of the argument ϑ as the maxima of L(x, ϑ). So, applying the logarithm

and differentiating,5 gives

d(logL)

dp
=

d

dp
(ℓ log p+ (n− ℓ) log(1− p)) =

ℓ

p
− n− ℓ

1− p
,

which is 0 when p = ℓ/n. This is indeed the maximum. Thus, here the MLE again coincides with X̄n.

3Exercise.
4Throughout these notes log always refers to the natural logarithm.
5Exercise: deal with the boundary cases
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The function logL is referred to as the log-likelihood function and denoted ℓx(ϑ)

Example 5 (MLE in the Gaussian model) Consider the Gaussian model from Example 3, but

parametrize it with N (µ, σ2) instead of N (µ, ν) (this is purely for computational convenience, the

result will not be affected). We have

L(x, µ, σ) =
1

(σ
√
2π)n

n∏
i=1

e−
(xi−µ)2

2σ2 .

Which (µ, σ) maximizes this for a fixed x? Taking the logarithm again gives

ℓx(µ, σ) = −1

2

n∑
i=1

(
xi − µ

σ

)2

− n log σ − n log
√
2π. (1)

Differentiating with respect to µ:

∂ℓ

∂µ
= −1

2

n∑
i=1

2

(
xi − µ

σ

)(
− 1

σ

)
=

1

σ2

n∑
i=1

(xi − µ) ,

which is 0 when

µ =
1

n

n∑
i=1

xi,

thus the MLE for µ is our ‘old friend’ X̄n. Now, differentiating (1) with respect to σ, we obtain

∂ℓ

∂σ
= −1

2

n∑
i=1

(−2)
(xi − µ)2

σ3
− n

σ
=

1

σ3

(
n∑

i=1

(xi − µ)2 − nσ2

)
,

which is 0 when

σ2 =
1

n

n∑
i=1

(xi − µ)2,

so we again obtain

σ̂ =

√√√√ 1

n

n∑
i=1

(Xi − X̄n)2 =
√
S̄2
n.

So, in both the Bernoulli and the Gaussian model, we got the same estimators using MoM and MLE.

They also coincided with the generic estimators for the mean and the variance X̄n and S̄2
n. We

emphasize though, that this is rather a coincidence, and perhaps a testimony to the ‘quality’ of both

methods. In general, however, they may produce different estimators.
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