
NMAI059 – Probability and Statistics 1

Mykhaylo Tyomkyn

Lecture 10 - Introduction to Statistics. Estimators.

In Probability theory we dealt with measures and (distributions of) random variables that were given.

In Statistics, on the other hand, we work with data that carries some ‘hidden’ randomness, and we

try to infer that randomness and its parameters.

Example 1 We have a delivery of 10000 avocados some of which are rotten inside. We take a sample

of 50 and check them (checking an avocado destroys it, so we can only afford to sample a small number).

We want to come up with some answer regarding the total number of rotten ones. There are several

ways of doing so:

� An estimator: a single number, our ‘best guess’, as to how many are rotten. For instance, if 2

avocados out of our sample of 50, that is 4%, were bad, we may guess that 4% out of the 10000,

i.e., 400 in total are rotten.1

� A confidence interval: we want to give a range corresponding to a ‘degree of certainty’, e.g., we

want to say “I am 85% certain that the number of rotten avocados lies in the interval [300, 500].”

But what does that even mean, i.e., what probability space does 85% in that sentence refer to?

� A hypothesis test. We have agreed with the supplier that we reject the delivery if more than 5%

of the avocados are rotten. So we choose a number c ∈ {0, . . . , 50} and reject the delivery if more

than c avocados out of the sampled 50 are bad. How should we pick c? Note that we can make

two different kinds of error: we can wrongly reject a good delivery, or wrongly accept a bad one.

We shall study all three of the above approaches (and more), but first we need to formalize the setup.

Note first that in the above example we sampled without replacement. This may be an accurate

description of reality but is computationally more difficult to handle than sampling with replacement.

So, going forward, we will always sample with replacement. Now, let us introduce the statistical model.

Definition 1 (Statistical model) We are given an event space (Ω,F) and an unknown/hidden (but

fixed) probability measure P on F . We take a random sample represented by iid random variables

(X1, . . . , Xn) with Xi ∼ P for all i. Our goal is to infer P or its parameters, such as mean and

variance, from the sample.

This approach is known as the Classical statistics. By contrast, Bayesian statistics (not part of this

course) makes an a priori assumption about the measure, and adjusts it according to the observations.
2

1This is a very reasonable guess, as we shall see soon.
2These two approaches in some sense reflect the two interpretations of Probability, discussed in Lecture 1.
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We distinguish between

� Non-parametric models: P can by ‘anything’. More precisely, we have P ∈ P, where P is a (very

general) family of probability measures, e.g. P = L1(Ω,F).

� Parametric models: P ∈ {Pϑ : ϑ ∈ Θ}. That is, we know in advance what type of measure P is,

but do not know one or multiple parameters.

Here are some examples of parametric models. We use R+ = (0,∞).

Example 2 With (Ω,F) defined accordingly, let

� P ∈ {Pϑ : ϑ ∈ Θ} = {Pois(λ) : λ ∈ R+}. Here we have ϑ = λ and Θ = R+.

� P ∈ {Pϑ : ϑ ∈ Θ} = {Unif(a, b) : a, b ∈ R}. Here we have ϑ = (a, b) and Θ = R2.

� P ∈ {Pϑ : ϑ ∈ Θ} = {N (µ, ν) : µ ∈ R, ν ∈ R+}. Here we have ϑ = (µ, ν) and Θ = R× R+.

Definition 2 (Statistic) Any (real) function T = T (X1, . . . , Xn) of the random sample is called a

statistic.

A statistic is basically a random variable on Ωn. The choice of a different name is solely in order to

emphasize the context.

Example 3 We have a dataset of heights in a certain homogeneous population of humans. Prior

experience tells us that it exhibits a normal distribution3 X ∼ N (µ, ν). To infer µ we may use a

statistic such as (X1 + · · ·+Xn)/n. To infer ν we use a different statistic (more on this later).

Definition 3 (Estimator) If a statistic T is used to estimate a parameter of the model (such as ϑ

or some function g(ϑ)), then such a statistic is called an estimator of that parameter. 4 In this case,

given an outcome (x1, . . . , xn) = (X1(ω), . . . , Xn(ω)) of our random sample, the value T (x1, . . . , xn)

is called an estimate for said parameter.

Example 4 We want to infer the bias (probability of coming up ‘heads’) p of a coin. To this end, we

may use the estimator p̂ = k/n, where k is the number of ‘heads’ among the n samples. Note that this

is essentially the same statistic as in the previous example.

How to tell if an estimator is ‘good’? There are several criteria for this.

Definition 4 (Bias, unbiased, asymptotically unbiased) The bias of an estimator T of g(ϑ), is

the function bias : Θ → R given by

biasϑ(T ) = Eϑ(T )− g(ϑ).

3We shall often use X here, implying X ∼ P.
4The estimator of g(ϑ) is sometimes denoted ĝ(ϑ) or ḡ(ϑ).
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Here Eϑ(T ) stands for the expectation of T under assumption P = Pϑ. The estimator is unbiased if

biasϑ(T ) = 0 for all ϑ ∈ Θ. 5 A family of estimators (Tn = Tn(X1, . . . , Xn))
∞
n=1 is unbiased if each

Tn is unbiased. The family is asymptotically unbiased if

lim
n→∞

biasϑ(Tn) = 0

for all ϑ ∈ Θ.

Example 5 The statistic X̄n = (X1+ · · ·+Xn)/n considered in the previous examples is an unbiased

estimator for µ (also in the non-parametric setting). This follows from the linearity of expectation:

for any measure P with a finite mean µ we have (using X ∼ P)

E(X̄n) =
1

n

n∑
i=1

E(Xi) = E(X) = µ.

Definition 5 (Consistent) A family of estimators (Tn = Tn(X1, . . . , Xn))
∞
n=1 of a parameter of the

model, say g(ϑ), is consistent if for all ϵ > 0 and ϑ ∈ Θ:

lim
n→∞

Pϑ(|Tn − g(ϑ)| > ϵ) = 0.

Note this is basically convergence in probability. Thus, unsurprisingly, we have

Example 6 The estimator X̄n for µ from before is consistent, by WLLN.

Example 7 (Consistent ̸= unbiased) µ̂ = X1 is an unbiased estimator of µ, but (taking Tn = X1

for all n) it is, in general, not consistent. On the other hand, the family (X1 + · · · +Xn)/(n + 1) of

estimators of µ is consistent but not unbiased. It is asymptotically unbiased, though.6

Now that we have seen a consistent and unbiased estimator for the mean, we may ask to find one for

the variance. A näıve guess would be to take the uncorrected sample variance

S̄2
n =

1

n

n∑
i=1

(Xi − X̄n)
2.

Surprisingly, there turns out to be a better candidate, namely the Bessel correction of the sample

variance

S̄2
n =

1

n− 1

n∑
i=1

(Xi − X̄n)
2.

Theorem 1 Ŝ2
n is an unbiased estimator of the variance σ2. Whereas S̄2

n is merely asymptotically

unbiased. 7

5The above concepts also make sense in a non-parametric setting. For instance, an estimator T of the mean µ is

unbiased if EP(T ) = µ for all P ∈ P.
6Not a coincidence: under the additional assumption that V ar(Tn) is bounded, ‘consistent’ implies ‘asymptotically

unbiased’.
7It follows that Ŝ2

n and S̄2
n are consistent, by the previous footnote, provided all P ∈ P are in L4, i.e., each EP(X

4) is

finite.
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Proof

S̄2
n =

1

n

n∑
i=1

(Xi − X̄n)
2 =

1

n

n∑
i=1

((Xi − µ)− (X̄n − µ))2

=
1

n

n∑
i=1

(
(Xi − µ)2 − 2(Xi − µ)(X̄n − µ) + (X̄n − µ)2

)
=

1

n

n∑
i=1

(Xi − µ)2 − 2

n
(X̄n − µ)

n∑
i=1

(Xi − µ) +
1

n

n∑
i=1

(X̄n − µ)2

=
1

n

n∑
i=1

(Xi − µ)2 − 2

n
(X̄n − µ) · n(X̄n − µ) + (X̄n − µ)2

=
1

n

n∑
i=1

(Xi − µ)2 − (X̄n − µ)2.

Therefore, since X̄n is an unbiased estimator for µ,

E(S̄2
n) =

1

n

n∑
i=1

E(Xi − µ)2 − E((X̄n − µ)2) =
n

n
E((X − µ)2)− E((X̄n − E(X̄n))

2)

= V ar(X)− V ar(X̄n) = (1− 1

n
)σ2,

as, by independence,

V ar(X̄n) = V ar

(
1

n

n∑
i=1

Xi

)
=

n · V ar(X)

n2
=

V ar(X)

n
.

Which means

E(Ŝ2
n) = E

(
n

n− 1
S̄2
n

)
=

n

n− 1
E(S̄2

n) = σ2,

so Ŝ2
n is unbiased. As for S̄2

n, we have

lim
n→∞

(E(S̄2
n)− σ2) = lim

n→∞

−σ2

n
= 0,

so S̄2
n is asymptotically unbiased. 2
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