NMAI059 – Probability and Statistics 1

Mykhaylo Tyomkyn

Lecture 10 - Introduction to Statistics. Estimators.

In *Probability theory* we dealt with measures and (distributions of) random variables that were *given*. In *Statistics*, on the other hand, we work with *data* that carries some 'hidden' randomness, and we try to *infer* that randomness and its parameters.

Example 1 We have a delivery of 10000 avocados some of which are rotten inside. We take a sample of 50 and check them (checking an avocado destroys it, so we can only afford to sample a small number). We want to come up with some answer regarding the total number of rotten ones. There are several ways of doing so:

- An estimator: a single number, our 'best guess', as to how many are rotten. For instance, if 2 avocados out of our sample of 50, that is 4%, were bad, we may guess that 4% out of the 10000, i.e., 400 in total are rotten.¹
- A confidence interval: we want to give a range corresponding to a 'degree of certainty', e.g., we want to say "I am 85% certain that the number of rotten avocados lies in the interval [300, 500]." But what does that even mean, i.e., what probability space does 85% in that sentence refer to?
- A hypothesis test. We have agreed with the supplier that we reject the delivery if more than 5% of the avocados are rotten. So we choose a number $c \in \{0, ..., 50\}$ and reject the delivery if more than c avocados out of the sampled 50 are bad. How should we pick c? Note that we can make two different kinds of error: we can wrongly reject a good delivery, or wrongly accept a bad one.

We shall study all three of the above approaches (and more), but first we need to *formalize* the setup. Note first that in the above example we sampled *without* replacement. This may be an accurate description of reality but is computationally more difficult to handle than sampling *with* replacement. So, going forward, we will always sample with replacement. Now, let us introduce the *statistical model*.

Definition 1 (Statistical model) We are given an event space (Ω, \mathcal{F}) and an unknown/hidden (but fixed) probability measure \mathbb{P} on \mathcal{F} . We take a random sample represented by iid random variables (X_1, \ldots, X_n) with $X_i \sim \mathbb{P}$ for all *i*. Our goal is to infer \mathbb{P} or its parameters, such as mean and variance, from the sample.

This approach is known as the *Classical statistics*. By contrast, *Bayesian statistics* (not part of this course) makes an a priori assumption about the measure, and adjusts it according to the observations. 2

¹This is a very reasonable guess, as we shall see soon.

²These two approaches in some sense reflect the two interpretations of Probability, discussed in Lecture 1.

We distinguish between

- Non-parametric models: \mathbb{P} can by 'anything'. More precisely, we have $\mathbb{P} \in \mathcal{P}$, where \mathcal{P} is a (very general) family of probability measures, e.g. $\mathcal{P} = L^1(\Omega, \mathcal{F})$.
- Parametric models: $\mathbb{P} \in \{\mathbb{P}_{\vartheta} : \vartheta \in \Theta\}$. That is, we know in advance what type of measure \mathbb{P} is, but do not know one or multiple parameters.

Here are some examples of parametric models. We use $\mathbb{R}^+ = (0, \infty)$.

Example 2 With (Ω, \mathcal{F}) defined accordingly, let

- $\mathbb{P} \in \{\mathbb{P}_{\vartheta} : \vartheta \in \Theta\} = \{Pois(\lambda) : \lambda \in \mathbb{R}^+\}$. Here we have $\vartheta = \lambda$ and $\Theta = \mathbb{R}^+$.
- $\mathbb{P} \in \{\mathbb{P}_{\vartheta} : \vartheta \in \Theta\} = \{Unif(a, b) : a, b \in \mathbb{R}\}$. Here we have $\vartheta = (a, b)$ and $\Theta = \mathbb{R}^2$.
- $\mathbb{P} \in \{\mathbb{P}_{\vartheta} : \vartheta \in \Theta\} = \{\mathcal{N}(\mu, \nu) : \mu \in \mathbb{R}, \nu \in \mathbb{R}^+\}$. Here we have $\vartheta = (\mu, \nu)$ and $\Theta = \mathbb{R} \times \mathbb{R}^+$.

Definition 2 (Statistic) Any (real) function $T = T(X_1, ..., X_n)$ of the random sample is called a statistic.

A statistic is basically a random variable on Ω^n . The choice of a different name is solely in order to emphasize the context.

Example 3 We have a dataset of heights in a certain homogeneous population of humans. Prior experience tells us that it exhibits a normal distribution³ $X \sim \mathcal{N}(\mu, \nu)$. To infer μ we may use a statistic such as $(X_1 + \cdots + X_n)/n$. To infer ν we use a different statistic (more on this later).

Definition 3 (Estimator) If a statistic T is used to estimate a parameter of the model (such as ϑ or some function $g(\vartheta)$), then such a statistic is called an estimator of that parameter. ⁴ In this case, given an outcome $(x_1, \ldots, x_n) = (X_1(\omega), \ldots, X_n(\omega))$ of our random sample, the value $T(x_1, \ldots, x_n)$ is called an estimate for said parameter.

Example 4 We want to infer the bias (probability of coming up 'heads') p of a coin. To this end, we may use the estimator $\hat{p} = k/n$, where k is the number of 'heads' among the n samples. Note that this is essentially the same statistic as in the previous example.

How to tell if an estimator is 'good'? There are several criteria for this.

Definition 4 (Bias, unbiased, asymptotically unbiased) The bias of an estimator T of $g(\vartheta)$, is the function bias : $\Theta \to \mathbb{R}$ given by

$$bias_{\vartheta}(T) = \mathbb{E}_{\vartheta}(T) - g(\vartheta).$$

³We shall often use X here, implying $X \sim \mathbb{P}$.

⁴The estimator of $g(\vartheta)$ is sometimes denoted $\hat{g}(\vartheta)$ or $\bar{g}(\vartheta)$.

Here $\mathbb{E}_{\vartheta}(T)$ stands for the expectation of T under assumption $\mathbb{P} = \mathbb{P}_{\vartheta}$. The estimator is unbiased if $bias_{\vartheta}(T) = 0$ for all $\vartheta \in \Theta$. ⁵ A family of estimators $(T_n = T_n(X_1, \ldots, X_n))_{n=1}^{\infty}$ is unbiased if each T_n is unbiased. The family is asymptotically unbiased if

$$\lim_{n \to \infty} bias_{\vartheta}(T_n) = 0$$

for all $\vartheta \in \Theta$.

Example 5 The statistic $\bar{X}_n = (X_1 + \cdots + X_n)/n$ considered in the previous examples is an unbiased estimator for μ (also in the non-parametric setting). This follows from the linearity of expectation: for any measure \mathbb{P} with a finite mean μ we have (using $X \sim \mathbb{P}$)

$$\mathbb{E}(\bar{X}_n) = \frac{1}{n} \sum_{i=1}^n \mathbb{E}(X_i) = E(X) = \mu.$$

Definition 5 (Consistent) A family of estimators $(T_n = T_n(X_1, \ldots, X_n))_{n=1}^{\infty}$ of a parameter of the model, say $g(\vartheta)$, is consistent if for all $\epsilon > 0$ and $\vartheta \in \Theta$:

$$\lim_{n \to \infty} \mathbb{P}_{\vartheta}(|T_n - g(\vartheta)| > \epsilon) = 0$$

Note this is basically convergence in probability. Thus, unsurprisingly, we have

Example 6 The estimator \overline{X}_n for μ from before is consistent, by WLLN.

Example 7 (Consistent \neq **unbiased)** $\hat{\mu} = X_1$ is an unbiased estimator of μ , but (taking $T_n = X_1$ for all n) it is, in general, not consistent. On the other hand, the family $(X_1 + \cdots + X_n)/(n+1)$ of estimators of μ is consistent but not unbiased. It is asymptotically unbiased, though.⁶

Now that we have seen a consistent and unbiased estimator for the mean, we may ask to find one for the variance. A naïve guess would be to take the *uncorrected sample variance*

$$\bar{S}_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2.$$

Surprisingly, there turns out to be a better candidate, namely the *Bessel correction* of the sample variance

$$\bar{S}_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2.$$

Theorem 1 \hat{S}_n^2 is an unbiased estimator of the variance σ^2 . Whereas \bar{S}_n^2 is merely asymptotically unbiased.⁷

⁵The above concepts also make sense in a non-parametric setting. For instance, an estimator T of the mean μ is unbiased if $\mathbb{E}_{\mathbb{P}}(T) = \mu$ for all $\mathbb{P} \in \mathcal{P}$.

⁶Not a coincidence: under the additional assumption that $Var(T_n)$ is bounded, 'consistent' implies 'asymptotically unbiased'.

⁷It follows that \hat{S}_n^2 and \bar{S}_n^2 are consistent, by the previous footnote, provided all $\mathbb{P} \in \mathcal{P}$ are in L^4 , i.e., each $\mathbb{E}_{\mathbb{P}}(X^4)$ is finite.

Proof

$$\bar{S}_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2 = \frac{1}{n} \sum_{i=1}^n ((X_i - \mu) - (\bar{X}_n - \mu))^2$$
$$= \frac{1}{n} \sum_{i=1}^n ((X_i - \mu)^2 - 2(X_i - \mu)(\bar{X}_n - \mu) + (\bar{X}_n - \mu)^2)$$
$$= \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2 - \frac{2}{n}(\bar{X}_n - \mu) \sum_{i=1}^n (X_i - \mu) + \frac{1}{n} \sum_{i=1}^n (\bar{X}_n - \mu)^2$$
$$= \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2 - \frac{2}{n}(\bar{X}_n - \mu) \cdot n(\bar{X}_n - \mu) + (\bar{X}_n - \mu)^2$$
$$= \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2 - (\bar{X}_n - \mu)^2.$$

Therefore, since \bar{X}_n is an unbiased estimator for μ ,

$$\mathbb{E}(\bar{S}_n^2) = \frac{1}{n} \sum_{i=1}^n \mathbb{E}(X_i - \mu)^2 - \mathbb{E}((\bar{X}_n - \mu)^2) = \frac{n}{n} \mathbb{E}((X - \mu)^2) - \mathbb{E}((\bar{X}_n - \mathbb{E}(\bar{X}_n))^2)$$

= $Var(X) - Var(\bar{X}_n) = (1 - \frac{1}{n})\sigma^2,$

as, by independence,

$$Var(\bar{X}_n) = Var\left(\frac{1}{n}\sum_{i=1}^n X_i\right) = \frac{n \cdot Var(X)}{n^2} = \frac{Var(X)}{n}.$$

Which means

$$\mathbb{E}(\hat{S}_n^2) = \mathbb{E}\left(\frac{n}{n-1}\bar{S}_n^2\right) = \frac{n}{n-1}\mathbb{E}(\bar{S}_n^2) = \sigma^2,$$

so \hat{S}_n^2 is unbiased. As for \bar{S}_n^2 , we have

$$\lim_{n \to \infty} (\mathbb{E}(\bar{S}_n^2) - \sigma^2) = \lim_{n \to \infty} \frac{-\sigma^2}{n} = 0,$$

so \bar{S}_n^2 is asymptotically unbiased.