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Mykhaylo Tyomkyn

Lecture 1 - Introduction. Axioms of Probability

Probability is a term often used in everyday life, in an attempt to measure randomness and uncertainty.

But what do we actually mean when we say “The probability of [...] happening is large/small”? We

refer to any scenario involving randomness as a random experiment, no matter if it is man made or

inherent in the nature.

Philosophically, the two most commonly used interpretations of probability are as follows.

� Frequentist: How often will the event happen if the experiment is repeated many times?

� Subjective/Bayesian: How certain I am about the event to occur in the experiment? What

betting odds am I willing to take for it?

There is a lot to be said about subjective advantages and drawbacks of either approach, but ultimately

it does not matter for us, as we aim to study Probability as a formal mathematical concept.

As the name of the course stipulates, we shall cover basic concepts of Probability theory and Statistics.

Both study randomness mathematically. So, what is the difference between the two? When dealing

with a random experiment, Probability (theory) assumes the underlying ‘rules of randomness’ as given,

while Statistics tries to infer them from the experiment itself.

Example 1 A typical question in Probability: A fair coin is tossed 100 times. How likely are we to

see at least 60 ‘heads’?

Its counterpart in Statistics: An unknown coin is tossed 100 times, and comes up ‘heads’ 60 times.

How likely is it that the coin is fair?

In order to do Statistics, inferring unknown probabilities, we need first to develop a good understanding

of probabilities when the rules of randomness are given. Hence, we will begin with Probability theory,

and move on to Statistics in the second half of the course.

To define probability formally, let us first consider the classical approach that some of us may have

seen in high school:

Probability =
#Relevant outcomes

#All outcomes
.

This works well in many scenarios (e.g. a single die throw), but has some shortcomings.

1. Oftentimes the elementary outcomes of an experiment are not equally likely, think of a biased

coin or a loaded die. We want to have more flexibility in our modelling.
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2. We want to extend the notion of probability to experiments (‘sample spaces’) with infinite, or

even uncountable numbers of outcomes.

Example 2 (Bertrand’s paradox) Given a circle of radius 1, what is the probability that a ran-

domly chosen chord forms a central angle of at least 120 degrees? There are three different methods of

estimating said probability, which all appear very logical, yet yield different results: 1/3, 1/4, 1/2.

It turns out that the classical probability notion, and our intuition based thereon, do not apply in

infinite, let alone uncountable, sample spaces. The workaround: let the probability be “what we define

it to be”, as long as it follows certain natural rules/axioms.

Definition 1 (Probability space) A probability space is a triple (Ω,F ,P), where

� Ω is a set, called the sample space.

� F ⊆ 2Ω is the event space, 1 satisfying certain axioms (for now, and for the most part of the

course we can take F = 2Ω)

� P : F → [0, 1] is a function, called the probability function (also “probability measure”,

“probability distribution”), satisfying Kolmogoroff’s axioms (see below).

The interpretation of the above: each ω ∈ Ω is an elementary outcome of a random experiment (e.g.,

for a single die throw we can take Ω = {1, 2, 3, 4, 5, 6}). F is the set of all “events”, i.e., subsets A ⊆ Ω

about which we make probability statements. When Ω is finite or countably infinite, we always put

F = 2Ω, i.e., we may speak of probability of any collection of outcomes (there is a reason why we

take a more restrictive approach when dealing with uncountable sample spaces, more on this further

down). Finally, P assigns to the events their probabilities. We demand that it satisfies the following

axioms.

Definition 2 (Kolmogoroff’s axioms) The probability function P must satisfy

(i) P(∅) = 0 and P(Ω) = 1.

(ii-) P(A ∪B) = P(A) + P(B) for any disjoint events A,B.

(ii) More generally, P(
⋃∞

i=1Ai) =
∑∞

i=1 P(Ai) for any sequence
2 of pairwise disjoint3 events A1, A2, . . . ,.

The last item in this list is usually referred as σ-additivity (sigma-additivity).

When Ω is finite or countably infinite, as we use F = 2Ω, we can work with the following simplified

definition.

Definition 3 (Countable probability spaces) A countable probability space is a tuple (Ω,P) com-

prising a countable set Ω and, with F = 2Ω, a function P : F → [0, 1], satisfying

12Ω denotes the power set of Ω. That is, 2Ω = {A ⊆ Ω}.
2Note that the value of the sum does not depend on the summation order, as all summands are non-negative (“absolute

convergence”).
3Meaning Ai ∩Aj = ∅ for any i ̸= j.
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� P(∅) = 0, P(Ω) = 1,

� P(A) =
∑

ω∈A P({ω}), for every A ∈ F .

In particular, we must have
∑

ω∈Ω P({ω}) = 1. Conversely, every sequence of non-negative reals whose

total sum is 1 gives rise to a probability distribution. Let us now look at some basic examples.

Example 3 Let Ω be finite, and for all ω ∈ Ω set P({ω}) = 1/|Ω|. Then, for any A ∈ F we have

P(A) =
|A|
|Ω|

.

This is the uniform measure/distribution and corresponds to the classical model we discussed in

the introduction.

Remarkably, when Ω is countably infinite, say Ω = N, a uniform measure does not exist! This is

because there exists no constant function f : N → [0, 1] satisfying
∑∞

i=1 f(i) = 1. Thus, there is no

such thing as a ‘(uniformly) random integer’.

Example 4 Let Ω = N = {1, 2, . . . } and P({i}) = 2−i for all i. Then∑
ω∈Ω

P({ω}) = 1

2
+

1

4
+

1

8
+ · · · = 1.

So, this gives rise to a probability distribution on N via4

P(A) =
∑
ω∈A

P({ω}) =
∑
i∈A

2−i.

This is an instance of the geometric distribution, we will define it later more generally.

Exercise 1 In the above probability model, what is the probability that the randomly chosen number

is even? In other words, find P(A), where A = {2, 4, . . . } is the set of positive even numbers.

When Ω is uncountable, for instance Ω = R or an interval in R, one needs to be more careful about

the event space F . Allowing F = 2Ω as before would lead to counterintuitive phenomena or even

contradictions.

For example, suppose Ω = [0, 1], F = 2Ω, and want to define the uniform measure P : F → [0, 1]. It

is natural to require that P satisfy P([a, b]) = b − a for all 0 ≤ a ≤ b ≤ 1, and that P be translation

invariant, i.e., shifting A by a constant would not change its probability (as long as the image remains

inside [0, 1]). Surprisingly, it turns out that these natural demands are impossible to reconcile with

σ-additivity (look up “Vitali set”).

Having said that, these phenomena can be ignored for most practical purposes.

Let us now establish some fundamental properties of probability spaces.

Theorem 1 Given a probability space (Ω,F ,P), we have

4Technically on 2N, but this is a commonly used shorthand
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1. P(A) + P(Ω \A) = 1 for all A ∈ F .

2. A ⊆ B ⇒ P(A) ≤ P(B) for all A,B ∈ F . (‘monotonicity’)

3. P(A ∪B) = P(A) + P(B)− P(A ∩B) for all A,B ∈ F . (‘inclusion-exclusion’)

4. P(
⋃∞

n=1An) = limn→∞ P(An) for any A1, A2, · · · ∈ F with A1 ⊆ A2 ⊆ A3 ⊆ . . . (‘continuity’)

5. P(
⋃∞

n=1An) ≤
∑∞

i=1 P(An) for any A1, A2, · · · ∈ F . (‘union bound’)

Note that the σ-additivity axiom holds with = but requires that the events are pairwise disjoint, while

the union bound holds ‘merely’ with ≤, but for any sequence of events.

Proof Statements 1., 2. and 3. follow immediately from the axioms.

To prove 4. first note that the limit always exists, as the sequence (P(An))n is increasing (by statement

2.) and bounded since P(An) ≤ 1 for all n. Consider now the events Bn = An \ An−1 and B1 = A1.

Note that the events (Bn)n are pairwise disjoint and
⋃∞

n=1Bn =
⋃∞

n=1An. Therefore, by σ-additivity,

P(
∞⋃
n=1

An) = P(
∞⋃
n=1

Bn) =

∞∑
n=1

P(Bn) = lim
n→∞

n∑
i=1

P(Bi) = lim
n→∞

P(
n⋃

i=1

Bi) = lim
n→∞

P(An).

To prove 5., first show that it holds for finitely many events, using inclusion-exclusion and induction

(exercise). To extend it to infinite sequences, consider the events Cn =
⋃n

i=1Ai. Note that C1 ⊆ C2 ⊆
. . . and

⋃∞
i=1Cn =

⋃∞
i=1An. So, apply statement 4. we obtain

P(
∞⋃
n=1

An) = P(
∞⋃
n=1

Cn) = lim
n→∞

P(Cn) = lim
n→∞

P(
n⋃

i=1

Ai).

Now, for each n we have

P(
n⋃

i=1

Ai) ≤
n∑

i=1

P(Ai) ≤
∞∑
i=1

P(Ai, )

and so this also must hold in the limit:

P(
∞⋃
n=1

An) = lim
n→∞

P(
n⋃

i=1

Ai) ≤
∞∑
i=1

P(Ai) =

∞∑
n=1

P(An).
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