Class worksheet 8: Mathematical analysis 1

April 24, 2024

Name: _____

This is just to practice, no points are awarded. $\mathbb{N} = \{1, 2, ...\}$, log with unspecified base is the natural logarithm.

- 1. Apply the inverse function rule to compute the derivatives of
 - (a) \sqrt{x}
 - (b) $\log x$
 - (c) $\arcsin x$
 - (d) $\arctan x$
- 2. Prove the following inequalities.
 - a) For all $a, b \in \mathbb{R}$ we have $|\cos a \cos b| \le |a b|$.
 - b) For all $x \in (-1, \infty)$ we have $x + 1 \ge \exp(\frac{x}{1+x})$.
- 3. (*) Prove that if the functions f and g are continuous on [a, b] and differentiable on (a, b), then for some $c \in (a, b)$ we have

$$(f(b) - f(a))g'(c) = (g(b) - g(a))f'(c)$$

Hint: consider the function h(x) = f(x) - rg(x), where r is chosen in order to achieve h(a) = h(b).

The above fact is known as Cauchy's mean value theorem. It implies L'Hospital's theorem. Can you see how?