Class worksheet 8: Mathematical analysis 1

April 24, 2024

Name: \qquad
This is just to practice, no points are awarded. $\mathbb{N}=\{1,2, \ldots\}, \log$ with unspecified base is the natural logarithm.

1. Apply the inverse function rule to compute the derivatives of
(a) \sqrt{x}
(b) $\log x$
(c) $\arcsin x$
(d) $\arctan x$
2. Prove the following inequalities.
a) For all $a, b \in \mathbb{R}$ we have $|\cos a-\cos b| \leq|a-b|$.
b) For all $x \in(-1, \infty)$ we have $x+1 \geq \exp \left(\frac{x}{1+x}\right)$.
3. $\left(^{*}\right)$ Prove that if the functions f and g are continuous on $[a, b]$ and differentiable on (a, b), then for some $c \in(a, b)$ we have

$$
(f(b)-f(a)) g^{\prime}(c)=(g(b)-g(a)) f^{\prime}(c)
$$

Hint: consider the function $h(x)=f(x)-r g(x)$, where r is chosen in order to achieve $h(a)=h(b)$.

The above fact is known as Cauchy's mean value theorem. It implies L'Hospital's theorem. Can you see how?

