Class worksheet 4: Mathematical analysis 1

March 20, 2024

Name: _____

This is just to practice, no points are awarded. $\mathbb{N} = \{1, 2, \dots\}$, log is the natural logarithm.

1. Does the series converge, and why?

(a)
$$\sum_{n=1}^{\infty} \frac{1}{2n+1}$$

(b) $\sum_{n=1}^{\infty} \frac{2n+5}{n^3+1}$
(c) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$

2. Compute the limit of the series

(a)
$$\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1}$$

(b) $\sum_{n=1}^{\infty} \frac{2^{n+1} + 3^n}{6^n}$
(c) $\sum_{n=1}^{\infty} \frac{2n - 1}{2^n}$

3. Prove that the series converges

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n!}$$

(b)
$$\sum_{n=1}^{\infty} \frac{2^n}{n!}$$

(c)
$$\sum_{n=1}^{\infty} {\binom{2n}{1}} \frac{1}{5^n}$$

(d)
$$\sum_{n=1}^{\infty} {\left(\frac{n+1}{3n+2}\right)^n}$$

(e)
$$\sum_{n=1}^{\infty} {\left(\frac{n}{\sqrt{n}} - 1\right)^n}$$

(f)
$$\sum_{n=1}^{\infty} \frac{\cos(\pi n)}{n - \log n}$$