# Class worksheet 3: Mathematical analysis 1 

March 13, 2024

Name: $\qquad$
This is just to practice. No points are awarded. $\mathbb{N}=\{1,2,3, \ldots\}$

1. Let $\left(a_{n}\right)$ be a sequence such that $\lim _{n \rightarrow \infty} a_{n}=1$. Decide whether the following statements about ( $a_{n}$ ) are true (and justify your answer).
(a) $\forall \varepsilon>0 \exists n_{0} \forall n>n_{0}\left|a_{n}-1\right|<\varepsilon$
(b) $\exists n_{0} \forall \varepsilon>0 \forall n>n_{0}\left|a_{n}-1\right|<\varepsilon$
2. Compute the limits (if they exist) of the following sequences, as $n \in \mathbb{N}$ tends to infinity.
(a) $\frac{\lfloor\sqrt{n}\rfloor}{\sqrt{n}}$
(b) $\frac{3^{n}+5^{n}+7^{n}}{3^{n+1}+5^{n+1}+7^{n+1}}$
(c) $\frac{(2 n+1)^{20}(-3 n+2)^{30}}{(4 n-5)^{50}}$
(d) $\frac{n^{n}}{n!}$
(e) $\frac{2 n^{2}+4 n+n \sin n}{n \cos n+(2 n+\sin n)^{2}}$
(f) $\cos \left(n^{2} \pi\right)+\cos ((n+1) \pi)$
(g) $\sum_{k=1}^{n}\left(\frac{1}{2^{k}}+\frac{1}{3^{k}}\right)$
(h) $\sum_{k=1}^{n} \frac{1}{k(k+1)}$
3. Find two different sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ such that $\left(a_{n}\right)$ is a subsequence of $\left(b_{n}\right)$ and vice versa.
4. (*) Determine, if the recurrently defined sequence has a limit. What is the limit?
(a) $a_{1}=0$ and $a_{n+1}=a_{n}+\frac{1}{2}\left(x-a_{n}\right)^{2}$ for $0 \leq x \leq 1$
(b) $a_{1}=c$ and $a_{n+1}=\frac{1}{2}\left(a_{n}+\frac{2}{a_{n}}\right)$, for $c \in(0, \infty)$
