Class worksheet 3: Mathematical analysis 1

March 13, 2024

Name: _____

This is just to practice. No points are awarded. $\mathbb{N} = \{1, 2, 3, \ldots\}$

- 1. Let (a_n) be a sequence such that $\lim_{n\to\infty} a_n = 1$. Decide whether the following statements about (a_n) are true (and justify your answer).
 - (a) $\forall \varepsilon > 0 \exists n_0 \forall n > n_0 |a_n 1| < \varepsilon$
 - (b) $\exists n_0 \ \forall \varepsilon > 0 \ \forall n > n_0 \ |a_n 1| < \varepsilon$
- 2. Compute the limits (if they exist) of the following sequences, as $n \in \mathbb{N}$ tends to infinity.
 - (a) $\frac{\lfloor\sqrt{n}\rfloor}{\sqrt{n}}$ (b) $\frac{3^{n}+5^{n}+7^{n}}{3^{n+1}+5^{n+1}+7^{n+1}}$ (c) $\frac{(2n+1)^{20}(-3n+2)^{30}}{(4n-5)^{50}}$ (d) $\frac{n^{n}}{n!}$ (e) $\frac{2n^{2}+4n+n\sin n}{n\cos n+(2n+\sin n)^{2}}$ (f) $\cos(n^{2}\pi) + \cos((n+1)\pi)$ (g) $\sum_{k=1}^{n}(\frac{1}{2^{k}}+\frac{1}{3^{k}})$
 - (h) $\sum_{k=1}^{n} \frac{1}{k(k+1)}$
- 3. Find two different sequences (a_n) and (b_n) such that (a_n) is a subsequence of (b_n) and vice versa.
- 4. (*) Determine, if the recurrently defined sequence has a limit. What is the limit?
 - (a) $a_1 = 0$ and $a_{n+1} = a_n + \frac{1}{2}(x a_n)^2$ for $0 \le x \le 1$ (b) $a_1 = c$ and $a_{n+1} = \frac{1}{2}(a_n + \frac{2}{a_n})$, for $c \in (0, \infty)$