Class worksheet 2: Mathematical analysis 1

March 6, 2024

Name: \qquad
This is just to practice. No points are awarded. $\mathbb{N}=\{1,2,3, \ldots\}$

1. Does the sequence have a limit? What is the limit? Justify your answer.
(a) $\frac{n-1}{n+1}$
(b) $\left(3+\frac{1}{n}+\frac{1}{n^{2}-1}\right)\left(2-\frac{1}{n^{2}}\right)$
(c) $\frac{n^{3}-10}{1-10 n^{3}}$
(d) $\frac{1+\ldots+n}{n^{2}}$
(e) $\frac{\sqrt{n}}{n^{2}+1}$
(f) $\frac{1}{n} \sin n^{2}$
(g) $\cos \left(\frac{\pi n}{4}\right)$
(h) $\sqrt{n+5}-\sqrt{n-1}$
2. Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ and $\left(b_{n}\right)_{n \in \mathbb{N}}$ be sequences in \mathbb{R}. Decide if true or false:
(a) $\lim _{n \rightarrow \infty} a_{n}=a \Leftrightarrow \lim _{n \rightarrow \infty} a_{n+1}=a$
(b) $\lim _{n \rightarrow \infty} a_{n}=a \Leftrightarrow \lim _{n \rightarrow \infty} a_{2 n}=a$
(c) $\left(\lim _{n \rightarrow \infty} a_{n}=a, \lim _{n \rightarrow \infty} b_{n}=b\right.$ and $\left.\forall n \in \mathbb{N}: a_{n} \leq b_{n}\right) \Rightarrow a \leq b$.
(d) $\left(\lim _{n \rightarrow \infty} a_{n}=a, \lim _{n \rightarrow \infty} b_{n}=b\right.$ and $\left.\forall n \in \mathbb{N}: a_{n}<b_{n}\right) \Rightarrow a<b$.
3. $\left({ }^{*}\right)$ Prove that for any set X we have $|\mathcal{P}(X)|>|X|$. Hint: Suppose that $f: X \rightarrow \mathcal{P}(X)$ is a bijection. Consider $Y=\{x \in X: x \notin f(x)\}$.
4. ${ }^{*}$) (Cantor-Bernstein theorem) Let X and Y be two (infinite) sets such that there exist injections $f: X \rightarrow Y$ and $g: Y \rightarrow X$. Show that $|X|=|Y|$ (i.e., construct a bijection between X and Y).
