3rd homework set for Mathematical analysis
Due: 15 May, 2024 at 10:40 AM. Total homework points are capped at 40.

1. [3 points] With the aid of Taylor polynomials, compute the following limits.
a) $\lim _{x \rightarrow 0} \frac{e^{x} \sin x-x(1+x)}{x^{3}}$.
b) $\lim _{x \rightarrow \infty}\left(\left(x^{6}+x^{5}\right)^{1 / 6}-\left(x^{6}-x^{5}\right)^{1 / 6}\right)$.
c) $\lim _{x \rightarrow \infty}\left(x-x^{2} \log \left(1+\frac{1}{x}\right)\right)$.
2. [7 points] Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function.
a) Suppose $f^{\prime}(0)=f^{\prime \prime}(0)=0$ and $f^{(3)}(0)>0$. Is 0 a local minimum, maximum or neither?
b) Suppose $f^{\prime}(0)=f^{\prime \prime}(0)=f^{(3)}(0)=0$ and $f^{(4)}(0)>0$. Is 0 a local minimum, maximum or neither?
c) Suppose $f^{(k)}(0)=0$ for all $k \in \mathbb{N}$. Can f be strictly increasing on the interval $(-\epsilon, \epsilon)$, for some $\epsilon>0$?
3. [6 points] Using substitution, convert the integrals below to integrals of a rational function. You do not have to calculate the resulting integrals.
a) $\int \frac{1}{\sin x \cos x} d x$.
b) $\int \frac{1}{\sin x} d x$.
c) $\int(\tan x)^{5} d x$.
4. [4 points] Compute the area
a) Between the parabola $y=x^{2}$ and the x-axis
b) Below the $y=\sin x$ curve on $[0, \pi]$
c) Between the graphs of $\sin x$ and $\cos x$ on $[0,2 \pi]$
d) Of the unit circle
