2nd homework set for Mathematical analysis
Due: April 24, 2024 at 10:40 AM.

1. [6 points] Let the function $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined via $f(x)=x^{3+\operatorname{sgn} x}$ where

$$
\operatorname{sgn}(x)= \begin{cases}1 & \text { for } \quad x>0 \\ 0 & \text { for } \quad x=0 \\ -1 & \text { for } \quad x<0\end{cases}
$$

Determine the (two-sided) derivative of f at every point where it exists.
2. [4 points] We cut out small squares from the corners of a square sheet of paper and fold it to make a box (without a lid). How large should the cut-out squares be to maximize the volume of the box that is formed?
3. [6 points] Using the L'Hospital rule, compute the limits
(a) $\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{x}$
(b) $\lim _{x \rightarrow 0} \frac{\sin 2 x}{x}$
(c) $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}$
(d) $\lim _{x \rightarrow 0} \frac{\sin (\sin (\sin x))}{\tan (\tan x)}$
(e) $\lim _{x \rightarrow e} \frac{\log x-1}{x-e}$
(f) $\lim _{x \rightarrow 1} \frac{x+x^{2}+\cdots+x^{n}-n}{x-1}$, where $n \in \mathbb{N}$
4. [4 points] Using Taylor polynomials, numerically approximate the following values up to six digits after the decimal point. You can omit error estimates.
a) $\exp (0.01)$
b) $\cos 0.1$
c) $\sqrt{0.98}$
d) $\log 1.2$

