1st homework set for Mathematical analysis
Due: March 20, 2024 at 10:40 AM.

1. [4 points] In each of the two cases, decide if the given set A has an upper bound, a supremum, and a maximum in the given set M. Justify your answers well: if you claim that some number is rational, write it as a fraction, if you use some theorem or observation from the lecture, state it, if you claim that some number is a supremum, prove that there is no better upper bound, etc.
(a) $A=\mathbb{Q} \cap(1,2), M=\mathbb{Q} \backslash \mathbb{Z}$.
(b) $A=\{0.1,0.11,0.111,0.1111,0.11111, \ldots\}, M=\mathbb{Q}$ (note that all numbers in A have a finite decimal expansion).
2. [6 points] Consider the following two statements about a sequence $\left(a_{n}\right)$ of real numbers. For each of them, decide whether it implies the other. For each of the possible implications, either prove it, or find a counterexample.
(a) The sequence $\left(a_{n}\right)$ is bounded.
(b) There is a number $K \in \mathbb{R}$ such that for every $m \in \mathbb{N}$ and for every $n \in \mathbb{N}$ with $n \geq m$ we have $\left|a_{n}-a_{m}\right|<K$.
3. [4 points] Compute the limit or prove that it does not exist.
(a) $\lim _{n \rightarrow \infty} \frac{(2 n+1)^{10}\left(2^{n}+5^{n}\right)}{\left(3^{n}+5^{n}\right)(3 n-1)^{5}(2 n-1)^{5}}$
(b) $\lim _{n \rightarrow \infty} \frac{\lfloor\sqrt{2 n-2}\rfloor}{2 \sqrt{n}+\cos n}$,
where $\lfloor x\rfloor$ stands for the largest integer less or equal x.
4. [6 points] Determine whether the following series converge. Justify your answer well.
(a) $\sum_{n=1}^{\infty}\left(\frac{1}{\sqrt{n}}\right)^{n}$
(b) $\sum_{n=1}^{\infty}\left(10^{10}\right)^{\frac{n}{10^{10}}}$
