Home assignment 0

Mathematical Analysis 1

Submission deadline: 6 March, 10:40

This is a **test** for the submission system and an opportunity for you to practice. No points are awarded, submission is voluntary.

- **1.** Prove that $\sqrt{3} \notin \mathbb{Q}$ and $\log_2 3 \notin \mathbb{Q}$.
- 2. Negate the statement. Decide if the statement or its negation is true.

 $\forall x_1 \in \mathbb{R} \ \exists y_1 \in \mathbb{R} \ \forall x_2 \in \mathbb{R} \ \exists y_2 \in \mathbb{R} \ \forall x_3 \in \mathbb{R} \ \exists y_3 \in \mathbb{R} : \ x_1 < y_2 < x_3 \Rightarrow y_1 < x_2 < y_3.$

3. Give an *algebraic form* of an injective function $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$. That is, give a formula for the value of f(i, j) for an arbitrary (i, j).

4. Prove that the set of all *finite* subsets of \mathbb{N} is countable.

5. Prove that (0,1) and \mathbb{R} have the same cardinality. **Hint:** use a trigonometric function. Deduce that a countable union of sets, each of cardinality of \mathbb{R} , also has cardinality of \mathbb{R} .

6 (*). Prove that $\mathbb{R} \times \mathbb{R}$ and \mathbb{R} are of the same cardinality.