Home assignment 0

Mathematical Analysis 1

Submission deadline: 6 March, 10:40

This is a test for the submission system and an opportunity for you to practice. No points are awarded, submission is voluntary.

1. Prove that $\sqrt{3} \notin \mathbb{Q}$ and $\log _{2} 3 \notin \mathbb{Q}$.
2. Negate the statement. Decide if the statement or its negation is true.
$\forall x_{1} \in \mathbb{R} \exists y_{1} \in \mathbb{R} \forall x_{2} \in \mathbb{R} \exists y_{2} \in \mathbb{R} \forall x_{3} \in \mathbb{R} \exists y_{3} \in \mathbb{R}: x_{1}<y_{2}<x_{3} \Rightarrow y_{1}<x_{2}<y_{3}$.
3. Give an algebraic form of an injective function $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$. That is, give a formula for the value of $f(i, j)$ for an arbitrary (i, j).
4. Prove that the set of all finite subsets of \mathbb{N} is countable.
5. Prove that $(0,1)$ and \mathbb{R} have the same cardinality. Hint: use a trigonometric function. Deduce that a countable union of sets, each of cardinality of \mathbb{R}, also has cardinality of \mathbb{R}.

6 (*). Prove that $\mathbb{R} \times \mathbb{R}$ and \mathbb{R} are of the same cardinality.

