Home assignment 5

Combinatorics and Graphs 1

Submission deadline: 20 December, 12:20

Give rigorous proofs to your claims. Facts from the lecture can be used without a proof.

1. Let d_1, \ldots, d_n be non-negative integers with $\sum_{i=1}^n d_i = 2n - 2$. Determine the number of trees on [n] in which for every $i \in [n]$ the degree of i equals d_i .

- 2. (a) Let P_4 denote the path on four vertices and three edges. Prove that for every graph G on at least five vertices, at least one of G and \overline{G} contains P_4 as a subgraph. Construct a 4-vertex graph H such that neither H nor \overline{H} contains P_4 as a subgraph.
- (b) Let K_4^- denote the (unique up to isomorphism) graph on 4 vertices and 5 edges. Prove that for every 10-vertex graph G, at least one of G and \overline{G} contains K_4^- as a subgraph. What about 9-vertex graphs?

3. Prove for every k there exists N such that in any (vertex-)colouring $\phi : [N] \to k$ there exist $x, y, z \in [N]$ that $\phi(x) = \phi(y) = \phi(z)$ and x + y = z. **Hint:** define a k-colouring ψ of $\binom{[N]}{2}$ via $\psi(\{x, y\}) = \phi(|x - y|)$. Now apply Ramsey's theorem.

4. A sunflower is a set system (X, \mathcal{F}) such that there is a (possibly empty) subset $Y \subseteq X$ with $A_1 \cap A_2 = Y$ for all distinct $A_1, A_2 \in \mathcal{F}$.

Let $r \in \mathbb{N}$ and let $(\mathbb{N}, \mathcal{A})$ be a set system such that \mathcal{A} is infinite and all members of \mathcal{A} have cardinality r.

- (a) Prove that there exists an infinite $\mathcal{B} \subseteq \mathcal{A}$ and $0 \leq k \leq r$ such that for any distinct $B_1, B_2 \in \mathcal{B}$ we have $|B_1 \cap B_2| = k$.
- (b) Use this to prove that there exists an infinite sunflower $\mathcal{S} \subseteq \mathcal{A}$.