Home assignment 5

Combinatorics and Graphs 1

Submission deadline: 20 December, 12:20

Give rigorous proofs to your claims. Facts from the lecture can be used without a proof.

1. Let d_{1}, \ldots, d_{n} be non-negative integers with $\sum_{i=1}^{n} d_{i}=2 n-2$. Determine the number of trees on $[n]$ in which for every $i \in[n]$ the degree of i equals d_{i}.
2. (a) Let P_{4} denote the path on four vertices and three edges. Prove that for every graph G on at least five vertices, at least one of G and \bar{G} contains P_{4} as a subgraph. Construct a 4-vertex graph H such that neither H nor \bar{H} contains P_{4} as a subgraph.
(b) Let K_{4}^{-}denote the (unique up to isomorphism) graph on 4 vertices and 5 edges. Prove that for every 10 -vertex graph G, at least one of G and \bar{G} contains K_{4}^{-}as a subgraph. What about 9 -vertex graphs?
3. Prove for every k there exists N such that in any (vertex-)colouring $\phi:[N] \rightarrow k$ there exist $x, y, z \in[N]$ that $\phi(x)=\phi(y)=\phi(z)$ and $x+y=z$. Hint: define a k-colouring ψ of $\binom{[N]}{2}$ via $\psi(\{x, y\})=\phi(|x-y|)$. Now apply Ramsey's theorem.
4. A sunflower is a set system (X, \mathcal{F}) such that there is a (possibly empty) subset $Y \subseteq X$ with $A_{1} \cap A_{2}=Y$ for all distinct $A_{1}, A_{2} \in \mathcal{F}$.

Let $r \in \mathbb{N}$ and let $(\mathbb{N}, \mathcal{A})$ be a set system such that \mathcal{A} is infinite and all members of \mathcal{A} have cardinality r.
(a) Prove that there exists an infinite $\mathcal{B} \subseteq \mathcal{A}$ and $0 \leq k \leq r$ such that for any distinct $B_{1}, B_{2} \in \mathcal{B}$ we have $\left|B_{1} \cap B_{2}\right|=k$.
(b) Use this to prove that there exists an infinite sunflower $\mathcal{S} \subseteq \mathcal{A}$.

