Home assignment 4

Combinatorics and Graphs 1

Submission deadline: 13 December, 12:20

Give rigorous proofs to your claims. Facts from the lecture can be used without a proof.

1. Let G be a connected graph with at least one edge, and in which all vertices have even degree.
(a) Must G be 2-connected?
(b) Must G be 2-edge-connected?
2. Let $k \geq 2$ be an integer. Prove that if a connected bipartite graph is k-regular then it is 2 -connected. What about k-regular non-bipartite graphs?
3. Let \mathcal{P} be a finite projective plane and $G=(V, E)$ be its incidence graph.
(a) Prove that G is C_{4}-free.
(b) Prove that $|E|=\Theta\left(|V|^{3 / 2}\right)$.
4. Prove that any n-vertex graph that does not contain the complete bipartite graph $K_{2, t}$ as a subgraph has at most $\frac{1}{2} n^{3 / 2} \sqrt{t-1}+o\left(n^{3 / 2}\right)$ edges. Hint: Imitate the proof from Lecture 9 for $C_{4}=K_{2,2}$.
