Home assignment 2

Combinatorics and Graphs 1

Submission deadline: 8 November, 12:20

Give rigorous proofs to your claims. Statements proved in the lecture can be used without a proof. $[n]$ stands for $\{1, \ldots, n\}$.

1. Prove assertion (iii) of Theorem 1 from the lecture, aka Theorem 3.1.4 of the notes, directly, that is, without invoking duality (Theorem 3.2.2).
2. Let $n \geq 4$ be an integer, and let $X=\{0,1, \ldots, n\}$. Construct a set $\mathcal{F} \subseteq 2^{X}$ such that

- (X, \mathcal{F}) satisfies (P1) and (P2) from the definition of a finite projective plane,
- (X, \mathcal{F}) does not satisfy $(\mathrm{P} 0)$ from the definition of a finite projective plane, and
- Every $L \in \mathcal{F}$ satisfies $|L| \geq 2$, and there are at least two lines.

3. Assuming, there exist two orthogonal Latin squares of order n, prove that the numbers $1,2, \ldots, n^{2}$ can be arranged in an $n \times n$-table such that all row sums and column sums are the same.
4. Let L be the Latin square of order $2 n$, where $n \in \mathbb{N}$, defined by $L(i, j)=i+j \bmod 2 n$ (evaluated to be integer between 1 and $2 n$). Prove that there is no Latin square orthogonal to L. Hint: Show that, in fact, L does not have a single transversal.
