Home assignment 1

Combinatorics and Graphs 1

Submission deadline: 25 October, 12:20

1. Use generating functions to find a closed formula for the following sequences.
(a) $a_{0}=2, a_{1}=3 ; a_{n+2}=3 a_{n}-2 a_{n+1}$ for all $n \geq 0$.
(b) $b_{0}=1 ; b_{n+1}=3 b_{n}+2^{n+1}$ for all $n \geq 0$.
(c) $c_{0}=1 ; c_{n+1}=c_{n}+n+1$ for all $n \geq 0$.
(d) $d_{0}=4 ; d_{1}=3 ; d_{n}=d_{n-1}+2 d_{n-2}+3 \cdot 2^{n}$ for all $n \geq 2$.
2. Find the generating functions of the sequences below. Your answer should not involve any infinite sums.
(a) $1,0,1,0,1,0, \ldots$
(b) $0,0,0,3,-3,3,-3, \ldots$
(c) $1,2,1,4,1,8, \ldots$
(d) $-1,1,0,-1,1,0,-1,1,0, \ldots$
(e) $2,1,4,3,6,5, \ldots$
(f) $1,0,1,1,0,2,1,0,4,1,0,8,1,0,16, \ldots$
3. Let S be the set of all strings over the alphabet $\{a, b, c, d\}$ such that a letter a never appears next to a letter b (that is, substrings $a b$ and $b a$ are forbidden). Using generating functions find a closed formula for the number of n-letter strings in S.

Hint: Let u_{n} be the number of n-letter strings in S starting with a or b, and let v_{n} be the number of n-letter strings in S starting with c or d. Find recursive formulas relating u_{n} 's and v_{n} 's, compute the corresponding generating functions, and then derive the closed formulas. Your answer should somehow involve $\sqrt{17}$.
4. Using generating functions determine the number of ways one can collect n fruits: apples, bananas, cherries and dates under the following restrictions (combined).

- The number of apples must be even.
- The number of bananas must be a multiple of 5 .
- There can be at most 4 cherries.
- There can be at most one date.

