Home assignment 0

Combinatorics and Graphs 1

Submission deadline: 11 October, 12:20

This is a test for the submission system and an opportunity for you to practice. No points are awarded, submission is voluntary.

1. Prove that for $k=o(\sqrt{n})$ we have $\binom{n}{k}=(1+o(1)) \frac{n^{k}}{k!}$.
2. Show that the number of subsets of $[n]:=\{1, \ldots, n\}$ of even cardinality is 2^{n-1}. If n is divisible by 8 , what is the number of subsets of $[n]$ of cardinality divisible by 4? (Hint: consider $(1+i)^{n}$, where $i=\sqrt{-1}$ is the imaginary unit.)
3. Let A_{1}, \ldots, A_{n} be finite sets. Recall the principle of inclusion-exclusion used to express $\left|\bigcup A_{i}\right|$, and the proof thereof. Show that if you take into account only the first $m<n$ sums in the formula, you will get an overestimate when m is odd and an underestimate when m is even.
