Class worksheet 11: Combinatorics and Graphs 1

December 20, 2023

Name: \qquad
This is just to practice, no points are awarded.

1. Revise the $(7,4,3)_{2}$ code based on the Fano plane, discussed in the lecture. Using properties of the Fano plane verify that this indeed is a code of distance 3.
2. Let H be a Hadamard matrix of order n (i.e., an $n \times n$ matrix with entries ± 1, such that the columns are orthogonal)
(a) Prove that $\left[\begin{array}{cc}H & H \\ H & -H\end{array}\right]$ is also a Hadamard matrix.
(b) Find the inverse of H. Deduce that the rows of H are orthogonal. Conclude that H^{T} is also a Hadamard matrix.
(c) Prove that if $n>2$, then n is a multiple of 4. Hint: First prove that n is even. Then show that without loss of generality one may assume the first row to be all 1 's and the second row to be $1, \ldots, 1,-1, \ldots,-1$.
3. Let $\ell \geq 2$ be an integer, and set $n=2^{\ell}-1, k=2^{\ell}-\ell-1$, and $d=3$. Suppose C is a $(n, k, d)_{2}$-code over $\Sigma=\{0,1\}$. Prove that for all $\mathbf{x} \in \Sigma^{n}$ there exists a unique codeword $\mathbf{c} \in C$ such that $d(\mathbf{x}, \mathbf{c}) \leq 1$. Hint: What is the number of words in Σ^{n} at Hamming distance at most 1 from a codeword in C ?
4. Let $\Sigma=\{0,1,2\}$.
(a) Show that if a code $C \subseteq \Sigma^{4}$ corrects one error, then $|C| \leq 9$. More precisely, assume that a code $C \subseteq \Sigma^{4}$ has a property that for all $\mathbf{w} \in \Sigma^{4}$ there is at most one codeword $\mathbf{x} \in C$ such that $d(\mathbf{x}, \mathbf{w}) \leq 1$. Prove that $|C| \leq 9$.
(b) Exhibit a code $C \subseteq \Sigma^{4}$ that has at least 20 codewords and recognizes one error. More precisely, exhibit a code $C \subseteq \Sigma^{4}$ with $|C|=20$ and satisfying $d(\mathbf{x}, \mathbf{y})>1$ for any distinct $\mathbf{x}, \mathbf{y} \in C$.
