Class worksheet 8: Combinatorics and Graphs 1

December 6, 2023

Name: \qquad
This is just to practice, no points are awarded.

1. (a) Let T be the tree on [9] with the edges $12,23,34,45,46,47,28,29$. Find the Prüfer code of T.
(b) Find the tree on [7] whose Prüfer code is $3,3,7,4,3$.
2. Find the smallest $n \in \mathbb{N}$ such that, for every graph G on at least n vertices, either G contains a triangle or \bar{G} (the complement of G) contains $K_{1,3}$ as a subgraph.
3. Let k be a positive integer. Prove that there exists N such that any sequence a_{1}, \ldots, a_{N} of distinct real numbers contains a subsequence of length k that is either strictly increasing or strictly decreasing.
4. (a) Prove Ramsey's theorem for any number of $k \geq 2$ colours. That is, show that for any $t_{1}, \ldots, t_{k} \geq 2$ there exists n such that in every k-colouring of $E\left(K_{n}\right)$ there must be a monochromatic t_{i}-clique of colour i, for some $i \in[k]$.
(b) Prove for every k there exists N such that in any (vertex-)colouring $\phi:[N] \rightarrow k$ there exist $x, y, z \in[N]$ that $\phi(x)=\phi(y)=\phi(z)$ and $x+y=z$. Hint: define a k-colouring ψ of $\binom{[N]}{2}$ via $\psi(\{x, y\})=\phi(|x-y|)$. Now apply Ramsey's theorem.
