Class worksheet 8: Combinatorics and Graphs 1

November 29, 2023

Name: \qquad
This is just to practice, no points are awarded.

1. On a set X of size 5 (e.g. $X=[5]$) write down two antichains of size 10 . Write down an antichain of size 8 whose members do not all have the same size.
2. Let $\mathcal{F} \subseteq 2^{[n]}$ be an antichain, and for each $k=0,1, \ldots, n$ let $\mathcal{F}_{k}:=\{A \in \mathcal{F}:|A|=k\}$. Prove that

$$
\sum_{k=0}^{n} \frac{\left|\mathcal{F}_{k}\right|}{\binom{n}{k}} \leq 1
$$

3. Suppose that $\mathcal{F} \subseteq 2^{[n]}$ is a set systems not containing a chain of length three (that is, no distinct $A, B, C \in \mathcal{F}$ satisfy $A \subseteq B \subseteq C)$. Prove that
(a) If n is odd then $|\mathcal{F}| \leq 2\binom{n}{\lfloor n / 2\rfloor}$. Give an example attaining this bound.
(b) If n is even then $|\mathcal{F}| \leq\binom{ n}{n / 2}+\binom{n}{n / 2-1}$. Give two examples attaining this bound.
4. How many Sperner families (X, \mathcal{F}) with $|X|=n$ and $|\mathcal{F}|=\binom{n}{\lfloor n / 2\rfloor}$ are there?
5. (*) Prove that for $n \geq 5$ every graph with n vertices and $\left\lfloor n^{2} / 4\right\rfloor+2$ edges contains a 'bowtie' (i.e., two triangles sharing exactly one vertex) as a subgraph.
