Class worksheet 6: Combinatorics and Graphs 1

November 15, 2023

Name: _____

This is just to practice, no points are awarded.

- 1. Let $S = \{S_1, \ldots, S_n\}$ be a set system on a ground set X. A *transversal* is a set of distinct $x_1, \ldots, x_n \in X$ such that $x_i \in S_i$ for all $i \in [n]$. Find a necessary and sufficient condition for existence of a transversal. **Hint:** Define appropriately an auxiliary bipartite graph, in order to apply Hall's theorem in it.
- 2. Consider the network (G, s, t, c) defined in yesterday's lecture, without assuming Hall's condition in G. What statement do we obtain, applying Max flow Min cut?
- 3. Let G be a bipartite graph on a bipartition (X, Y) with |X| = |Y|. Without invoking Hall's theorem, show that if Hall's condition is satisfied in X, it is also satisfied in Y.
- 4. (*) Use Tutte's theorem to prove the 'hard' direction of Hall's theorem. That is, let G = (V, E) be a bipartite graph with bipartition (X, Y), and assume that all sets $A \subseteq X$ satisfy $|A| \leq |N(A)|$. Using Tutte's theorem prove that G has an X-saturating matching.

Hint: First reduce the problem to the case |X| = |Y| (if not, add some vertices to G in a convenient way). Then show that for each $S \subseteq V$, $S \neq V$, the number of components C of $G \setminus S$ such that $|X \cap C| \neq |Y \cap C|$ is at most |S|. Now what?

5. (*) Let G be a countably infinite bipartite graph with bipartition (X, Y) such that $|N(A)| \ge |A|$ for every $A \subseteq X$. Give an example to show that G need not contain an X-saturating matching. Show however that if all vertices in X have finite degree, then G does contain an X-saturating matching.