Class worksheet 5: Combinatorics and Graphs 1

November 9, 2023

Name: \qquad
This is just to practice, no points are awarded.

1. Attached are two past exam problems. Find a max flow and a min cut using augmenting paths or otherwise.
2. Let (G, s, t, c) be a network that has more than one maximum flow. Prove that (G, s, t, c) has infinitely many maximum flows.
3. Let $\vec{G}=(V, \vec{E})$ be a directed graph and let c be an 'extended-real' capacity function on \vec{E}, that is, $c(x, y)$ is a non-negative real or $+\infty$. Let s and t be two vertices. Prove that either there is a (extended-real) flow from s to t with infinite value or there is a flow with maximal finite value.
4. ${ }^{*}$) A circulation in a directed graph \vec{G} is a flow without a source and a sink. Given a lower capacity $\ell(x, y)$ and an upper capacity $c(x, y)$ for each edge $\overrightarrow{x y}$ with $0 \leq \ell(x, y) \leq$ $c(x, y)$, we call a circulation g feasible if

$$
\ell(x, y) \leq g(x, y) \leq c(x, y)
$$

for every edge $\overrightarrow{x y}$. Prove that there is a feasible circulation if and only if

$$
\ell(A, B) \leq c(B, A)
$$

for every partition of V into sets A and $B=V \backslash A$.
Hint: One direction should be obvious. For the other one, add a source s, a $\operatorname{sink} t$, and send for every vertex of G an edge to t and an edge from s. Define on the new graph G^{*} a capacity function c^{*} via $c^{*}(x, y)=c(x, y)-\ell(x, y), c^{*}(s, x)=\ell(V, x)$ and $c^{*}(x, t)=\ell(x, V)$. Show that there is a feasible circulation in G if and only if there is a flow in G^{*} with value $\ell(V, V)$. Then apply Max-flow min-cut.

