Class worksheet 4: Combinatorics and Graphs 1

1 November, 2023

Name: \qquad
This is just to practice, no points are awarded. $[n]$ is shorthand for $\{1, \ldots, n\}$.

1. Prove all projective planes of order 2 are isomorphic (to this end, define isomorphism of finite projective planes appropriately).
2. Let A and B be a orthogonal $n \times n$ Latin squares and π and σ be permutations on $[n]$. Verify that $\pi(A)$ and $\sigma(B)$ are Latin squares. Show that they are orthogonal.
3. Let A_{1}, \ldots, A_{n-1} be pairwise orthogonal $n \times n$ Latin squares. Prove that for every $i, j, k, \ell \in[n]$ with $i \neq k$ and $j \neq \ell$ there exists $t \in[n-1]$ such that $A_{t}(i, j)=A_{t}(k, \ell)$. Show that such t is unique.
4. Let \mathbb{F} be the finite field of order n. How many distinct lines (through the origin) are there in \mathbb{F}^{3} ?
5. $\left(^{*}\right)$ How many different set systems $\mathcal{F} \subset 2^{[7]}$ forming a Fano plane are there? How many automorphisms does the Fano plane have? ${ }^{1}$
6. $\left(^{*}\right)$ Define a liberated square of order n to be an $n \times n$-table, filled with entries from [n], but with no restrictions to rows or columns. Orthogonality of liberated squares is defined in the same way as for Latin squares. For a given t consider the following two conditions
(i) There exist t pairwise orthogonal Latin squares of order n
(ii) There exist $t+2$ pairwise orthogonal liberated squares of order n.

Prove that
(a) (i) implies (ii).
(b) (ii) implies (i).

[^0]
[^0]: ${ }^{1}$ An automorphism of a finite projective plane (X, \mathcal{F}) is a bijection $\sigma: X \rightarrow X$ such that for each $L \in \mathcal{F}$, $\sigma[L]:=\{\sigma(x): x \in L\}$ satisfies $\sigma[L] \in \mathcal{F}$.

