Class worksheet 4: Combinatorics and Graphs 1

1 November, 2023

Name: _____

This is just to practice, no points are awarded. [n] is shorthand for $\{1, \ldots, n\}$.

- 1. Prove all projective planes of order 2 are isomorphic (to this end, define isomorphism of finite projective planes appropriately).
- 2. Let A and B be a orthogonal $n \times n$ Latin squares and π and σ be permutations on [n]. Verify that $\pi(A)$ and $\sigma(B)$ are Latin squares. Show that they are orthogonal.
- 3. Let A_1, \ldots, A_{n-1} be pairwise orthogonal $n \times n$ Latin squares. Prove that for every $i, j, k, \ell \in [n]$ with $i \neq k$ and $j \neq \ell$ there exists $t \in [n-1]$ such that $A_t(i, j) = A_t(k, \ell)$. Show that such t is unique.
- 4. Let \mathbb{F} be the finite field of order *n*. How many distinct lines (through the origin) are there in \mathbb{F}^3 ?
- 5. (*) How many different set systems $\mathcal{F} \subset 2^{[7]}$ forming a Fano plane are there? How many automorphisms does the Fano plane have? ¹
- 6. (*) Define a *liberated square* of order n to be an $n \times n$ -table, filled with entries from [n], but with no restrictions to rows or columns. Orthogonality of liberated squares is defined in the same way as for Latin squares. For a given t consider the following two conditions
 - (i) There exist t pairwise orthogonal Latin squares of order n
 - (ii) There exist t + 2 pairwise orthogonal liberated squares of order n.

Prove that

- (a) (i) implies (ii).
- (b) (ii) implies (i).

¹An automorphism of a finite projective plane (X, \mathcal{F}) is a bijection $\sigma : X \to X$ such that for each $L \in \mathcal{F}$, $\sigma[L] := \{\sigma(x) : x \in L\}$ satisfies $\sigma[L] \in \mathcal{F}$.