Class worksheet 3: Combinatorics and Graphs 1

October 25, 2023

Name: _____

This is just to practice, no points are awarded. $\mathbb{N} = \{1, 2, ...\}$, log with unspecified base is the natural logarithm.

- 1. Using just the axioms prove that there exists no projective plane of order 1.
- 2. Let (X, \mathcal{F}) be a finite projective plane and $(Y, \mathcal{G}) = (X, \mathcal{F})^*$ be its dual. Prove that (Y, \mathcal{G}) satisfies (P2) (we skipped this proof in the lecture).
- 3. Prove assertion (iii) of Theorem 1 from the lecture, aka Theorem 3.1.4 of the notes, *directly*, that is, without invoking duality.
- 4. (*) (Kirkman's schoolgirl problem, 1850, with n = 9 instead of 15 originally) Nine young ladies in a school walk out three abreast for four days in succession: it is required to arrange them daily so that no two shall walk twice abreast.
- 5. (*) Construct a finite projective plane of order 3.