Class worksheet 3: Combinatorics and Graphs 1

October 25, 2023

Name: \qquad
This is just to practice, no points are awarded. $\mathbb{N}=\{1,2, \ldots\}$, log with unspecified base is the natural logarithm.

1. Using just the axioms prove that there exists no projective plane of order 1.
2. Let (X, \mathcal{F}) be a finite projective plane and $(Y, \mathcal{G})=(X, \mathcal{F})^{*}$ be its dual. Prove that (Y, \mathcal{G}) satisfies (P2) (we skipped this proof in the lecture).
3. Prove assertion (iii) of Theorem 1 from the lecture, aka Theorem 3.1.4 of the notes, directly, that is, without invoking duality.
4. $\left(^{*}\right)$ (Kirkman's schoolgirl problem, 1850, with $n=9$ instead of 15 originally) Nine young ladies in a school walk out three abreast for four days in succession: it is required to arrange them daily so that no two shall walk twice abreast.
5. (*) Construct a finite projective plane of order 3.
