Class worksheet 1: Combinatorics and Graphs 1

October 4, 2023

Name: \qquad
This is just to practice, no points are awarded. $\mathbb{N}=\{1,2, \ldots\}$, log with unspecified base is the natural logarithm.

1. For two functions $f, g: \mathbb{N} \rightarrow \mathbb{R}$ determine (as $n \rightarrow \infty$) if $f=O(g), g=O(f)$ or both
(a) $f(n)=n^{2}, g(n)=n^{3}$
(b) $f(n)=c^{n}, g(n)=n^{k}$, where $c>1$ and $k \geq 1$ are constants.
(c) $f(n)=\log _{2} n, g(n)=\log _{8} n$
(d) $f(n)=n^{3} \log _{2} n, g(n)=3 n \log _{8} n+1$
(e) $f(n)=(\log n)^{\log 3}, g(n)=(\log 3)^{\log n}$
2. Use Stirling's formula to estimate
(a) $2 \cdot 4 \cdots 2 n$
(b) $1 \cdot 3 \cdots(2 n-1)$
(c) $\lim _{n \rightarrow \infty} \frac{1 \cdot 3 \ldots(2 n-1)}{2 \cdot 4 \cdots 2 n}$
3. Using the weak form of Stirling's formula (ignoring the $\sqrt{2 \pi n}$ term) estimate for large n and fixed $1>\alpha>0$ the value of $\binom{n}{\alpha n}$.
4. Prove that for $k=o(\sqrt{n})$ we have $\binom{n}{k}=(1+o(1)) \frac{n^{k}}{k!}$.
5. $\left(^{*}\right)$ Show that the number of subsets of $\{1, \ldots, n\}$ of even cardinality is 2^{n-1}. If n is divisible by 8 , what is the number of subsets of cardinality divisible by 4? (Hint: consider $(1+i)^{n}$, where $i=\sqrt{-1}$ is the imaginary unit.)
6. (*) Let A_{1}, \ldots, A_{n} be finite sets. Recall the principle of inclusion-exclusion used to express $\left|\bigcup A_{i}\right|$. Show that if you take into account only the first $m<n$ sums in the formula, you will get an overestimate when m is odd and an underestimate when m is even.
