NDMI113 — Extremal Combinatorics

Mykhaylo Tyomkyn

Lecture 6 - Applications of Frankl-Wilson.

In the previous lecture we covered the Modular Frankl-Wilson theorem. We restate it here for the
reader’s convenience.

Theorem 1 (Modular Frankl-Wilson) Let p be a prime and S C {0,...,p —1}. Let F C 2" be
such that |Alpmed p € S for all A € F, while |AN Blpmedp € S for all A# B € F. Then,
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In this lecture we discuss three famous applications of this theorem.

The Hadwiger-Nelson problem

Let U(R™) be the unit distance graph on R™. That is, let U(R"™) be the graph with vertex set R and
the edge set of all {z,y} such that ||z — y|| = 1, where || - || stands for the usual euclidean distance.
The Hadwiger-Nelson problem asks to determine x(U(R"™)), the chromatic number of this graph. By

compactness, this is equivalent to finding the largest chromatic number among finite subgraphs of
U(R™) (or oo if they are unbounded).

Since the regular simplex in R” forms a clique in U(R"), we get a lower bound x(U(R™)) > n +1 1,
By contrast, the best known upper bound is x(U(R")) < (3+0(1))"™ due to Larman and Rogers (’75).
The following theorem of Frankl and Wilson establishes a lower bound that is exponential as well.
Theorem 2 (Frankl-Wilson ’81) There exists ¢ > 1 such that x(U(R"™)) > c".

We shall need the following Lemma.

Lemma 1 Let p be a prime and let F C ([;lg}). Let |[ANB| # p for all A,B € F. Then |F| < 4(p4_p1).

Proof For each x € [4p], define F, := {4 € F | x € A}. Since

> IFL =) 1A =2p|F,

x€[4p] AeF

In R? a 7-vertex graph known as the Moser spindle demonstrates x(U(R?)) > 4. A 2018 result of de Grey improves
this to x(U(R?)) > 5. On the other hand, by tiling the plane with hexagons, it can be seen that x(U(R?)) < 7.



there exists = with |F,| > 1|F|. Then, for this z and any distinct 4, B € F, we have

| AN B[ ¢1{0,p,2p}.

In other words,
|AN B| # 0 mod p.

Since for all A € F, we clearly have |A|] = 0 mod p, we can apply Modular Frankl-Wilson with

S={1,...,p— 1} to obtain
s (4p 4p
o < <2 ;
‘f’_;(J a <p—1>

since (4f) > 2(;1_”1) for all i < p — 1. Hence, |F| < 2|F;| < 4(;?1), as desired. O

Proof [of Theorem 2] Let p be a large prime and n = 4p. Consider the indicator vectors ya of the
sets A € (%ﬁ) in R™. Observe that

Ixa = x5l = VIAAB| = V/|A] + |B| - 214N B| = v/2(2p — [AN B).

In particular, ||[x4 — xz|| = v/2p if and only if |[AN B| = p.
Let now V' C R™ be the set {vg = \/%XA cAe ([351)}, and G be the unit distance graph on V.
By construction, {va,vp} € E(G) if and only if |A N B| = p. Therefore, by Lemma 1 we have
4p
G) <4 :
“lG)= <p - 1>
It follows that

G v )
4(;—;1) = a(G) < X(G) < x(R").

Standard estimates of binomial coefficients show that the left hand side grows exponentially in p, and
therefore also in n, as n = 4p. It can be calculated to be at least ¢ with ¢ > 1.14. O

The Borsuk conjecture

Suppose that K C R? is a set of diameter 1, 2 and define k(K) to be the minimum number of sets
of diameter strictly less than 1 needed to partition K. Borsuk’s conjecture from 1933 stated that
k(d) == SUPgiqm(i)=1 k(K) = d + 1. That is, every set of diameter 1 can be partitioned into at most
d+ 1 sets of diameter less than 1. Borsuk’s conjecture was proved for d < 3 and for general d when K
a smooth convex set or a centrally symmetric set. However, the general Borsuk’s conjecture disproved
by Kahn and Kalai in 1993.

Theorem 3 There exists ¢ > 1 such that k(d) > cVd for large enough d.

Zsupremal euclidean distance between any two points in K



Proof Let p be a large prime and d = (421’). Set W = ([4219]) = E(Ku4p), so we identify W with the edge
set of the complete graph on [4p]. Index the coordinates of R? with W (i.e. we work in R"). Under
this viewpoint, since coordinates correspond to the edges of K4y, the 0/1-vectors correspond to the
subgraphs of Ky,,.

Let F = ([g‘z]). For each A € F, define
Ea={{i,jt eW|[An{ij} =1}

That is, E4 is the complete bipartite graph on the vertex sets A and A¢ = [4p] \ {A}.
Let G ={E4 | A€ F}. Since |A| = |A°| = 2p and E4 = FEc, we have

1 /4p
91=5(,").
2\2p
Let x4 be the indicator vector of E4: a 0/1-vector in R? defined by

() 1 if e e By
e =
xa 0 ifed Ea.

Define K = {x : A € F}, this is a finite point set in R? of size

o L[
K1=161=5(50)

Let A, B € F with A # B, B. Then

1/2
Ixa—xal = (Z(XA(e) = XB(e))2> = |EAAEg|'? = (|Eal + |Eg| — 2|Ea N Eg|)"/?.
eeW
We see that ||x4 — xp|| is maximized when |E4 N Eg| is minimized. It can be easily checked that the
latter happens when |AN B| = p. Now suppose that L C K satisfies diam(L) < diam(K). Considering
the subfamily G’ C G encoding L gives rise to a corresponding set system F' C F. In F’, there is no
pair A, B with |[AN B| = p, so by Lemma 1, |G’| < 4(p4fl
diameter less than one 1, one needs at least
104
3(2p)

4(,7)

). Thus, in order to partition K into sets of

Vd
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sets in the partition, where, it turns out, one can take ¢’ > 1.04.

Deterministic Ramsey constructions

Modular Frankl-Wilson readily gives the following ‘exact’ (as opposed to ‘modular’) counterpart.

Theorem 4 Let F C 2" and S C [n] be such that |A| ¢ S for all A € F and |ANB| € S for all

distinct A, B € F. Then
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Proof Choose a prime p > n and apply Modular Frankl-Wilson. O

Recall the well-known lower bound for the Ramsey numbers:
R(t,t) > V2"

The proof is due to Erdés and uses a basic probabilistic (or counting) argument: include every possible
edge between n vertices independently, with probability 1/2, then, for appropriate n, with a positive
probability the graph will have no clique or independent set of order ¢.

Tantalizingly, this is essentially still the best known bound as of year 2025. Its reliance on an ‘indirect’
probabilistic argument raises a natural question concerning explicit constructions. The disjoint union
of t — 1 cliques of order t — 1 each demonstrates that R(¢,t) > (t — 1)?; this is only quadratic in t and
there seems to be no obvious improvement using the same idea. In this light it is striking that Frankl
and Wilson were able to give a super-polynomial constructive lower bound.

Theorem 5 R(t,t) > t¢log2 t/logalogat yyhere ¢ > 0 is an absolute constant, via an explicit construction.

Proof Let p be a large prime, 7 = p?> —1 and m = p?. Define a graph G on the vertex set V(G) = ([m})

T

and with {A, B} € E(G) if and only if |A N B| = —1 mod p. Using the Modular Frankl-Wilson (with
S ={0,...,p—2}) we can upper bound the independence number of G as follows

0= E(2) (")

The clique number w(G), in turn, can be upper bounded using Theorem 4 (with S = {p — 1,2p —

L....(p—Dp—1}): 1
@3 (7)=2(,")

i=0
In conclusion, we have |V (G)| = (pgpil) while a(G),w(G) < t:= 2(pp_31). Applying Stirling’s approxi-
mation yields

R(t, t) > ¢ log, t/ log, logsy €,

for a constant ¢ > 0. O



