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Mykhaylo Tyomkyn

Lecture 6 - Applications of Frankl-Wilson.

In the previous lecture we covered the Modular Frankl-Wilson theorem. We restate it here for the

reader’s convenience.

Theorem 1 (Modular Frankl-Wilson) Let p be a prime and S ⊆ {0, . . . , p − 1}. Let F ⊆ 2[n] be

such that |A|mod p ̸∈ S for all A ∈ F , while |A ∩B|mod p ∈ S for all A ̸= B ∈ F . Then,

|F| ≤
|S|∑
i=0

(
n

i

)
.

In this lecture we discuss three famous applications of this theorem.

The Hadwiger-Nelson problem

Let U(Rn) be the unit distance graph on Rn. That is, let U(Rn) be the graph with vertex set Rn and

the edge set of all {x, y} such that ||x − y|| = 1, where || · || stands for the usual euclidean distance.

The Hadwiger-Nelson problem asks to determine χ(U(Rn)), the chromatic number of this graph. By

compactness, this is equivalent to finding the largest chromatic number among finite subgraphs of

U(Rn) (or ∞ if they are unbounded).

Since the regular simplex in Rn forms a clique in U(Rn), we get a lower bound χ(U(Rn)) ≥ n + 1 1.

By contrast, the best known upper bound is χ(U(Rn)) < (3+ o(1))n due to Larman and Rogers (’75).

The following theorem of Frankl and Wilson establishes a lower bound that is exponential as well.

Theorem 2 (Frankl-Wilson ’81) There exists c > 1 such that χ(U(Rn)) > cn.

We shall need the following Lemma.

Lemma 1 Let p be a prime and let F ⊆
(
[4p]
2p

)
. Let |A∩B| ≠ p for all A,B ∈ F . Then |F| ≤ 4

(
4p
p−1

)
.

Proof For each x ∈ [4p], define Fx := {A ∈ F | x ∈ A}. Since∑
x∈[4p]

|Fx| =
∑
A∈F

|A| = 2p|F|,

1In R2 a 7-vertex graph known as the Moser spindle demonstrates χ(U(R2)) ≥ 4. A 2018 result of de Grey improves

this to χ(U(R2)) ≥ 5. On the other hand, by tiling the plane with hexagons, it can be seen that χ(U(R2)) ≤ 7.
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there exists x with |Fx| ≥ 1
2 |F|. Then, for this x and any distinct A,B ∈ Fx we have

|A ∩B| /∈ {0, p, 2p}.

In other words,

|A ∩B| ̸≡ 0 mod p.

Since for all A ∈ Fx we clearly have |A| ≡ 0 mod p, we can apply Modular Frankl-Wilson with

S = {1, . . . , p− 1} to obtain

|Fx| ≤
p−1∑
i=0

(
4p

i

)
≤ 2

(
4p

p− 1

)
,

since
(
4p
i

)
≥ 2
(
4p
i−1

)
for all i ≤ p− 1. Hence, |F| ≤ 2|Fx| ≤ 4

(
4p
p−1

)
, as desired. 2

Proof [of Theorem 2] Let p be a large prime and n = 4p. Consider the indicator vectors χA of the

sets A ∈
(
[4p]
2p

)
in Rn. Observe that

∥χA − χB∥ =
√

|A∆B| =
√
|A|+ |B| − 2|A ∩B| =

√
2(2p− |A ∩B|).

In particular, ∥χA − χB∥ =
√
2p if and only if |A ∩B| = p.

Let now V ⊆ Rn be the set {vA = 1√
2p
χA : A ∈

(
[4p]
2p

)
}, and G be the unit distance graph on V .

By construction, {vA, vB} ∈ E(G) if and only if |A ∩B| = p. Therefore, by Lemma 1 we have

α(G) ≤ 4

(
4p

p− 1

)
.

It follows that (
4p
2p

)
4
(

4p
p−1

) ≤ |V |
α(G)

≤ χ(G) ≤ χ(Rn).

Standard estimates of binomial coefficients show that the left hand side grows exponentially in p, and

therefore also in n, as n = 4p. It can be calculated to be at least cn with c > 1.14. 2

The Borsuk conjecture

Suppose that K ⊆ Rd is a set of diameter 1, 2 and define k(K) to be the minimum number of sets

of diameter strictly less than 1 needed to partition K. Borsuk’s conjecture from 1933 stated that

k(d) := supdiam(K)=1 k(K) = d + 1. That is, every set of diameter 1 can be partitioned into at most

d+1 sets of diameter less than 1. Borsuk’s conjecture was proved for d ≤ 3 and for general d when K

a smooth convex set or a centrally symmetric set. However, the general Borsuk’s conjecture disproved

by Kahn and Kalai in 1993.

Theorem 3 There exists c > 1 such that k(d) > c
√
d for large enough d.

2supremal euclidean distance between any two points in K
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Proof Let p be a large prime and d =
(
4p
2

)
. Set W =

(
[4p]
2

)
= E(K4p), so we identify W with the edge

set of the complete graph on [4p]. Index the coordinates of Rd with W (i.e. we work in RW ). Under

this viewpoint, since coordinates correspond to the edges of K4p, the 0/1-vectors correspond to the

subgraphs of K4p.

Let F =
(
[4p]
2p

)
. For each A ∈ F , define

EA = {{i, j} ∈ W | |A ∩ {i, j}| = 1}.

That is, EA is the complete bipartite graph on the vertex sets A and Ac = [4p] \ {A}.
Let G = {EA | A ∈ F}. Since |A| = |Ac| = 2p and EA = EAc , we have

|G| = 1

2

(
4p

2p

)
.

Let χA be the indicator vector of EA: a 0/1-vector in Rd defined by

χA(e) =

{
1 if e ∈ EA

0 if e ̸∈ EA.

Define K = {χA : A ∈ F}, this is a finite point set in Rd of size

|K| = |G| = 1

2

(
4p

2p

)
.

Let A,B ∈ F with A ̸= B,Bc. Then

∥χA − χB∥ =

(∑
e∈W

(χA(e)− χB(e))
2

)1/2

= |EA∆EB|1/2 = (|EA|+ |EB| − 2|EA ∩ EB|)1/2.

We see that ∥χA − χB∥ is maximized when |EA ∩EB| is minimized. It can be easily checked that the

latter happens when |A∩B| = p. Now suppose that L ⊆ K satisfies diam(L) < diam(K). Considering

the subfamily G′ ⊆ G encoding L gives rise to a corresponding set system F ′ ⊆ F . In F ′, there is no

pair A,B with |A ∩ B| = p, so by Lemma 1, |G′| ≤ 4
(

4p
p−1

)
. Thus, in order to partition K into sets of

diameter less than one 1, one needs at least

1
2

(
4p
2p

)
4
(

4p
p−1

) ≥ cp > c′
√
d

sets in the partition, where, it turns out, one can take c′ > 1.04.

2

Deterministic Ramsey constructions

Modular Frankl-Wilson readily gives the following ‘exact’ (as opposed to ‘modular’) counterpart.

Theorem 4 Let F ⊆ 2[n] and S ⊆ [n] be such that |A| /∈ S for all A ∈ F and |A ∩ B| ∈ S for all

distinct A,B ∈ F . Then

|F| ≤
|S|∑
i=0

(
n

i

)
.
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Proof Choose a prime p > n and apply Modular Frankl-Wilson. 2

Recall the well-known lower bound for the Ramsey numbers:

R(t, t) ≥
√
2
t
.

The proof is due to Erdős and uses a basic probabilistic (or counting) argument: include every possible

edge between n vertices independently, with probability 1/2, then, for appropriate n, with a positive

probability the graph will have no clique or independent set of order t.

Tantalizingly, this is essentially still the best known bound as of year 2025. Its reliance on an ‘indirect’

probabilistic argument raises a natural question concerning explicit constructions. The disjoint union

of t− 1 cliques of order t− 1 each demonstrates that R(t, t) > (t− 1)2; this is only quadratic in t and

there seems to be no obvious improvement using the same idea. In this light it is striking that Frankl

and Wilson were able to give a super-polynomial constructive lower bound.

Theorem 5 R(t, t) > tc log2 t/ log2 log2 t where c > 0 is an absolute constant, via an explicit construction.

Proof Let p be a large prime, r = p2−1 and m = p3. Define a graph G on the vertex set V (G) =
(
[m]
r

)
and with {A,B} ∈ E(G) if and only if |A ∩B| ≡ −1 mod p. Using the Modular Frankl-Wilson (with

S = {0, . . . , p− 2}) we can upper bound the independence number of G as follows

α(G) ≤
p−1∑
i=0

(
m

i

)
≤ 2

(
m

p− 1

)
.

The clique number ω(G), in turn, can be upper bounded using Theorem 4 (with S = {p − 1, 2p −
1, . . . , (p− 1)p− 1}):

ω(G) ≤
p−1∑
i=0

(
m

i

)
≤ 2

(
m

p− 1

)
.

In conclusion, we have |V (G)| =
( p3

p2−1

)
while α(G), ω(G) ≤ t := 2

(
p3

p−1

)
. Applying Stirling’s approxi-

mation yields

R(t, t) > tc log2 t/ log2 log2 t,

for a constant c > 0. 2
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