NDMI113 – Extremal Combinatorics

Mykhaylo Tyomkyn

Lecture 5 - Exact and modular intersections.

In the previous lecture we considered set systems \mathcal{F} where every two distinct members intersect in at least t elements. What if instead we demand that every intersection is *exactly* of size t: how large can \mathcal{F} be? For t=0 it is easy to see that the answer is n+1, attained by $\mathcal{F} = \{\emptyset, \{1\}, \{2\}, \dots, \{n\}\}$. For t=1 one plausible candidate to be the largest is $\mathcal{F} = \{1\}, \{1,2\}, \{1,3\}, \dots, \{1,n\}\}$, with $|\mathcal{F}| = n$. This turns out to be best possible for any $t \geq 1$.

Theorem 1 (Fisher's Inequality) Let $t \geq 1$ and $\mathcal{F} \subseteq 2^{[n]}$ with $|A \cap B| = t$ for all $A \neq B \in \mathcal{F}$. Then $|\mathcal{F}| \leq n$.

Proof If for any $A \in \mathcal{F}$ we have |A| = t, then $A \subseteq B$ for all $B \in \mathcal{F}$. Since $|B \cap B'| = t$ for all $B, B' \in \mathcal{F}$, the sets in $\mathcal{F}_A = \{B \setminus A \mid B \in \mathcal{F}\}$ are disjoint. Hence, $|\mathcal{F}| \leq n$.

So, we may assume that |A| > t for all $A \in \mathcal{F}$. For each $A \in \mathcal{F}$ consider its characteristic vector χ_A over \mathbb{Q} , defined as $\chi_A = (\chi_A(1), \dots, \chi_A(n)) \in \mathbb{Q}^{[n]}$, where

$$\chi_A(i) = \begin{cases} 1 & \text{if } i \in A \\ 0 & \text{if } i \notin A. \end{cases}$$

For instance, if $\mathcal{F} = 2^{[5]}$ and $A = \{1, 2, 5\}$, then $\chi_A = (1, 1, 0, 0, 1)$.

We claim that the set of vectors $\{\chi_A \mid A \in \mathcal{F}\}$ is linearly independent and hence of size at most $\dim(\mathbb{Q}^n) = n$. This would readily imply $|\mathcal{F}| \leq n$.

To this end, suppose for a contradiction that there exist rationals $\lambda_A: A \in \mathcal{F}$ such that

$$\sum_{A \in \mathcal{F}} \lambda_A \chi_A = 0.$$

Fix some $B \in \mathcal{F}$ and take the standard scalar product of both sides with χ_B . We get

$$\left(\sum_{A\in\mathcal{F}}\lambda_A\chi_A\right)\cdot\chi_B=\sum_{A\in\mathcal{F}}\lambda_A(\chi_A\cdot\chi_B)=\sum_{A\in\mathcal{F}}\lambda_A|A\cap B|=\lambda_B|B|+t\sum_{A\in\mathcal{F}\setminus\{B\}}\lambda_A=0.$$

Subtracting and adding the term $t\lambda_B$ gives

$$\lambda_B(|B|-t) = -t \sum_{A \in \mathcal{F}} \lambda_A =: -t\Lambda.$$

If $\Lambda \neq 0$, then Λ and λ_B have opposite sign. Since B was arbitrary, this would hold for all $B \in \mathcal{F}$. But this is a contradiction since $\Lambda = \sum_{B \in \mathcal{F}} \lambda_B$.

So, $\Lambda = 0$. It follows that either $\lambda_B = 0$ or |B| - t = 0. It cannot be the latter since we assumed |A| > t for all $A \in \mathcal{F}$. Thus, $\lambda_B = 0$. But since B was an arbitrary set in \mathcal{F} , this implies all λ_B are zero. Hence, $\{\chi_A \mid A \in \mathcal{F}\}$ are indeed linearly independent.

A similar argument can be made in the modular setting.

Theorem 2 (Oddtown) Let $\mathcal{F} \subseteq 2^{[n]}$. Suppose |A| is odd for all $A \in \mathcal{F}$ and $|A \cap B|$ is even for all $A, B \in \mathcal{F}$. Then $|\mathcal{F}| \leq n$.

Proof The proof is analogous to that of Fisher's inequality, but working over \mathbb{F}_2 instead of \mathbb{Q} . Let χ_A be the characteristic vector of A over \mathbb{F}_2 . We claim that $\{\chi_A \mid A \in \mathcal{F}\}$ is linearly independent. Suppose otherwise: then for a non-empty $\mathcal{G} \subseteq \mathcal{F}$ we have

$$\sum_{A \in \mathcal{G}} \chi_A = 0.$$

Taking the 'standard scalar product' with χ_B for some $B \in \mathcal{G}$ we obtain

$$|B| + \sum_{A \in \mathcal{G} \setminus \{B\}} |A \cap B| = 0 \pmod{2},$$

which a contradiction since |B| is odd, and the remaining terms are even.

Exercise 1 Rephrase the above proof combinatorially, i.e. without using the language of linear algebra explicitly.

This can be generalized as follows.

Theorem 3 (Modular Frankl-Wilson Theorem) Let p be a prime and $S \subseteq \{0, ..., p-1\}$. Let $\mathcal{F} \subseteq 2^{[n]}$ be such that $|A|_{mod\ p} \notin S$ for all $A \in \mathcal{F}$, while $|A \cap B|_{mod\ p} \in S$ for all $A \neq B \in \mathcal{F}$. Then,

$$|\mathcal{F}| \le \sum_{i=0}^{|S|} \binom{n}{i}.$$

Proof For each $A \in \mathcal{F}$, let χ_A be the characteristic vector of A over the finite field \mathbb{F}_p . Furthermore, for each $A \in \mathcal{F}$, we define the n-variate polynomial $f_A : \mathbb{F}_p^n \to \mathbb{F}_p$ via

$$f_A(x_1,\ldots,x_n) = \prod_{s\in S} \left(\sum_{i\in A} x_i - s\right).$$

Then, for $B \in \mathcal{F}$, $B \neq A$, we have

$$f_A(\chi_B) = \prod_{s \in S} (|A \cap B| - s) = 0.$$

¹Not a scalar product in the classical sense, but a bilinear form nonetheless.

On the other hand, when A = B we have

$$f_A(\chi_A) = \prod_{s \in S} \left(\sum_{i \in A} |A| - s \right) \neq 0,$$

since $|A|_{\text{mod }p} \notin S$.

Now consider the operation \sim on multivariate polynomials variables which reduces all exponents to 1. For example, $f(x,y,z) = x^2y^3 + z^4 + 3 \stackrel{\sim}{\to} \tilde{f}(x,y,z) = xy + z + 3$. Notice that for 0-1 vectors $v \in \{0,1\}^n$ we have $f(v) = \tilde{f}(v)$. So, for $A, B \in \mathcal{F}$ it holds that $\tilde{f}_A(\chi_B) = 0$ if $B \neq A$ and $\tilde{f}_B(\chi_B) \neq 0$. We now claim that the set of polynomials $\{\tilde{f}_A \mid A \in \mathcal{F}\}$ is linearly independent over \mathbb{F}_p .

Suppose that there are coefficients $\lambda_A \in \mathbb{F}_p : A \in \mathcal{F}$ such that

$$\sum_{A \in \mathcal{F}} \lambda_A \tilde{f}_A = 0,$$

and let us evaluate this at χ_B for some $B \in \mathcal{F}$. We obtain

$$\sum_{A \in \mathcal{F}} \lambda_A \tilde{f}_A(\chi_B) = \lambda_B \tilde{f}_B(\chi_B) + \sum_{A \in \mathcal{F} \setminus \{B\}} \lambda_A \tilde{f}_A(\chi_B) = \lambda_B \tilde{f}_B(\chi_B) = 0,$$

and since $\tilde{f}_B(\chi_B) \neq 0$ we must have $\lambda_B = 0$. Since B was chosen from \mathcal{F} arbitrarily, all λ_A must be equal zero, meaning the polynomials \tilde{f} are linearly independent, as claimed.

Since each \tilde{f}_A is multi-linear of total degree at most |S|, we conclude that

$$|\mathcal{F}| \le \dim \operatorname{span}\{\tilde{f}_A : A \in \mathcal{F}\} \le \sum_{i=0}^{|S|} {n \choose i}.$$

Remark 1 It is natural to ask whether Frankl-Wilson generalizes to non-prime residues. This was shown to not be true by Grolmusz, who has shown that for p = 6, \mathcal{F} can be superpolynomial in size.