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Lecture 4 - Intersecting set systems.

Definition 1 (Intersecting) A set system F ⊆ 2[n] is intersecting if A ∩B ̸= ∅ for all A,B ∈ F .

A natural question to ask is how large an intersecting set can be.

Example 1 The ‘star’ set system {A ⊆ [n] | 1 ∈ A} is intersecting and has size 2n−1. It is easy to

see that this is the largest possible. Indeed, let F ⊆ 2[n] be intersecting. Partition 2[n] into 2n−1 pairs

{A, [n] \A}. At most one set from each pair can be in F .

It becomes more interesting if we ask about largest intersecting k-uniform families F ⊆
([n]
k

)
. There

are three different regimes:

1. k > n/2: The whole layer
([n]
k

)
is intersecting.

2. k = n/2: This case only occurs if n is even. Take one set from each complementary pair

{A, [n] \A}. Observe that any set system F constructed in this way is intersecting and has size

1

2

(
n

k

)
=

(
n− 1

k − 1

)
.

3. k < n/2: This case is the most interesting. One candidate to be the extremal example is again

the ‘star’, i.e. the family of all k-uniform sets containing a fixed element, say 1. This gives

|F| =
(
n−1
k−1

)
. Another candidate may be to take all sets containing two elements from {1, 2, 3}.

However, the former set system is larger. In fact, the following theorem guarantees that the star

is optimal.

Theorem 1 (Erdős-Ko-Rado) For k ≤ n/2, if F ⊆
([n]
k

)
is intersecting, then |F| ≤

(
n−1
k−1

)
.

We shall provide two proofs.

Proof [First proof] Let G = {Ā = [n] \ A | A ∈ F} ⊆
( [n]
n−k

)
. Since F is intersecting, no A ∈ F is

contained in any B̄ ∈ G. Therefore, taking the (n − 2k)-th shadow of G, we obtain a k-uniform set

system H = ∂(n−2k)G such that F ∩H = ∅, and so

|F|+ |H| ≤
(
n

k

)
.

Now suppose that |F| >
(
n−1
k−1

)
=

(
n−1
n−k

)
. Then, by repeated applications of Kruskal-Katona (Lovász

form), we get

|H| = |∂(n−2k)G| ≥
(

n− 1

n− k − (n− 2k)

)
=

(
n− 1

k

)
.
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So,

|F|+ |H| >
(
n− 1

k − 1

)
+

(
n− 1

k

)
=

(
n

k

)
,

a contradiction. 2

Proof [Second proof] Consider an arbitrary bijection f : [n] → Zn. We say that a set A ‘maps to

an interval’ under f if f(A) := {f(a) | a ∈ A} = {i, i + 1, . . . , i + k − 1} for some 0 ≤ i ≤ n − 1,

where addition is taken modulo n. We now double count N , the number of pairs (f,A) such that

f : [n] → Zn and f(A) is an interval.

We claim that for any given f , there are at most k sets in F that map to an interval under f . Fix

A ∈ A and suppose that f(A) = {i, i+1, . . . , i+k−1}. Since F is intersecting, any other interval under

f is of the form {j, j−1, . . . , j− (k−1)} or {j+1, j+2, . . . , j+k} for some j ∈ {i, i+1, . . . , i+k−1}.
However, for each j we can get at most one of these two intervals since they are disjoint. Hence, there

are at most k − 1 such intervals and so there are at most k in total. Summing over all n! bijections

[n] → Zn, we see that

N ≤ kn!.

On the other hand, each A ∈ F is an interval under exactly n(n− k)!k! bijections. So,

N = |F|n(n− k)!k!,

and thus

|F| ≤ kn!

n(n− k)!k!
=

k

n

(
n

k

)
=

(
n− 1

k − 1

)
.

2

Remark 1 The second proof goes under the name Katona’s circle method. It can also be phrased

probabilistically: take a uniformly random ‘circular order’ as above, and compute the expectation of

the number of sets in F mapped to intervals.

Remark 2 For k < n/2, equality occurs only when F is a star. For k = n/2, this is not the case.

Definition 2 (t-intersecting) A set system F ⊆ 2[n] is t-intersecting if |A∩B| ≥ t for all A,B ∈ F .

Theorem 2 Let 1 ≤ t ≤ k. Then, there exists n0(k, t) such that for all n ≥ n0, if F ⊆
([n]
k

)
is

t-intersecting, then |F| ≤
(
n−t
k−t

)
, with equality if and only if F is isomorphic to {A ⊆ [n] | [t] ⊆ A}.

Proof Let F be maximal t-intersecting. Then there exist A,B ∈ F such that |A ∩ B| = t. Assume

there exists C ∈ F so that A ∩ B ̸⊆ C. Then, every D ∈ F must have at least t + 1 elements in

A ∪B ∪ C. Thus, for large nj,

|F| ≤
(
|A ∪B ∪ C|

t+ 1

)(
n

k − t− 1

)
= Ok,t(n

k−t−1) <

(
n− t

k − t

)
.

2

What happens when n is not too large? This is answered by the Ahlswede-Khachatrian theorem.
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Example 2 (Frankl sets) Let Fi(n, k, t) = {A ∈
([n]
k

)
: |A ∩ [1, t + 2i]| ≥ t + i}, for 0 ≤ i ≤ n−t

2 .

Each Fi is t-intersecting. Note that the extremal example in Theorem 2 is F0.

Theorem 3 (Ahlswede-Khachatrian) For any n, k, t the maximum size of a t-intersecting sub-

family of
([n]
k

)
is achieved by some Fi(n, k, t). Every extremal set system isomorphic to some Fi.

To find the optimal i when given n, k, t, compare the sizes of consecutive Fi. This gives a range for n

as a function of k, t. In particular, F0 is the largest when n ≥ n0(k, t) = (t+ 1)(k − t+ 1).

Remark 3 (Erdős Matching Problem) How large can a set system F ⊂
([n]
k

)
be without contain-

ing s disjoint sets? For s = 2, this is solved by Erdős-Ko-Rado. It is conjectured that the answer is

max(
(
n
k

)
−
(
n−s+1

k

)
,
(
ks−1
k

)
). For large n it is known that

(
n
k

)
−
(
n−s+1

k

)
is the maximum.

Let us now consider a different type of intersection property.

Theorem 4 (Bollobás’ Two Families Theorem) Let A = {A1, . . . , Am} and B = {B1, . . . , Bm}
be two set systems such that

� Ai ∩Bi = ∅, for all i, and

� Ai ∩Bj ̸= ∅, for all i ̸= j.

Then,
m∑
i=1

(
|Ai|+ |Bi|

|Ai|

)−1

≤ 1.

Such pairs of set system are called cross-intersecting.

Corollary 1 In the ‘uniform’ case, that is when |Ai| = a and |Bi| = b for all i, we obtain m ≤
(
a+b
a

)
.

Corollary 2 If A is an antichain on [n] and B = Ac = {[n] \ A | A ∈ A}, then A and B are

cross-intersecting, so
n∑

k=0

|A ∩
([n]
k

)
|([n]

k

) ≤ 1,

giving another proof of the LYM inequality.

Proof Without restriction, assume that all sets involved are subsets of [n]. For a permutation π of

[n], we write A <π B if maxπ(A) < minπ(B), where π(S) := {π(x) | x ∈ S}. Let π ∈ Sn be chosen

uniformly at random from all permutations of [n]. Then, for each i, since Ai ∩Bi = ∅, we have

P(Ai <π Bi) =

(
|Ai|+ |Bi|

|Ai|

)−1

,

On the other hand, if Ai <π Bi then Aj ̸<π Bj for j ̸= i (as Ai ∩Bj and Aj ∩Bi are both nonempty).

So the events {Ai <π Bi}i∈[m] are disjoint. Therefore,

1 ≥ P(
⋃

i∈[m]

{Ai <π Bi}) =
m∑
i=1

P(Ai <π Bi) =
m∑
i=1

(
|Ai|+ |Bi|

|Ai|

)−1

.
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Let us now consider an application of the Two Families Theorem. For tradition reasons we will use

the language of “hypergraphs” rather than set systems.

Definition 3 (saturated) Let H be a r-uniform hypergraph. We say that a r-uniform hypergraph G

is H-saturated if G does not contain H as a subgraph, but after adding any missing edge to G, the

resulting hypergraph will contain H as a subgraph.

Definition 4 sat(n,H) := min{e(G) | |G| = n, G is H-saturated}.

For instance, if r = 2 and H = K3 then Mantel’s Theorem tells us that the size of an H-free graph

on n vertices is at most ⌊n2/4⌋, and it is easy to see that sat(n,K3) = n− 1. In higher uniformities,

very little is known about the the largest size of a K
(r)
t -free hypergraph. For r = 3, t = 4 this is the

famous Turan’s tetrahedron problem. In this light, it is surprising that Bollobás’s theorem determines

the saturation number precisely.

Theorem 5 Let G be an r-uniform hypergraph on [n], and suppose that adding any missing edge to

G creates a copy of K
(r)
r+s. Then

e(G) ≥
(
n

r

)
−
(
n− s

r

)
.

In particular, for H = K
(r)
r+s :=

(
[r+s]
r

)
, we have sat(n,H) =

(
n
r

)
−
(
n−s
r

)
.

Proof Let A = {A1, . . . , Am} =
(
[n]
r

)
\ E(G) be the set of non-edges of G. For each i, there is an

(r + s)-element set Ki ⊇ Ai such that adding Ai to G creates a copy of K
(r)
r+s with vertex set Ki. Let

Bi = [n] \Ki. Then

� |Ai| = r and |Bi| = n− r − s for each i;

� Ai ∩Bi = ∅ for each i;

� for distinct i, j, we have Ai ∩ Bj ̸= ∅ – else we would have Ai ⊆ [n] \ Bj = Kj , and so G would

be missing two edges Ai, Aj from the complete r-graph with vertex set Ki, contradicting the

definition of Ki.

So we can apply Corollary 1 to obtain

m ≤
(
r + (n− r − s)

r

)
=

(
n− s

r

)
.

2

Remark 4 The above bound is sharp, as witnessed by {A ∈
(
[n]
r

)
| A ∩ [s] ̸= ∅}.

Exercise 1 Examine the proof to see if the extremal example is unique up to isomorphism.
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