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Lecture 4 - Intersecting set systems.
Definition 1 (Intersecting) A set system F C 2" is intersecting if AN B # 0 for all A|B € F.

A natural question to ask is how large an intersecting set can be.

Example 1 The ‘star’ set system {A C [n] | 1 € A} is intersecting and has size 2%, It is easy to
see that this is the largest possible. Indeed, let F C 2" be intersecting. Partition 2" into 21 pairs
{A,[n]\ A}. At most one set from each pair can be in F.

It becomes more interesting if we ask about largest intersecting k-uniform families F C ([Z]). There
are three different regimes:

1. k > n/2: The whole layer ([Z]) is intersecting.

2. k = n/2: This case only occurs if n is even. Take one set from each complementary pair
{4, [n]\ A}. Observe that any set system F constructed in this way is intersecting and has size
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3. k < mn/2: This case is the most interesting. One candidate to be the extremal example is again
the ‘star’, i.e. the family of all k-uniform sets containing a fixed element, say 1. This gives
|F| = (Zj) Another candidate may be to take all sets containing two elements from {1, 2, 3}.

However, the former set system is larger. In fact, the following theorem guarantees that the star
is optimal.

Theorem 1 (Erdés-Ko-Rado) For k <n/2, if F C ([Z]) is intersecting, then |F| < (771).

We shall provide two proofs.

Proof [First proof] Let G = {A =[n]\ A | A€ F} C (n[ﬁ]k) Since F is intersecting, no A € F is
contained in any B € G. Therefore, taking the (n — 2k)-th shadow of G, we obtain a k-uniform set
system H = 0"~2)G such that F NH = 0, and so
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Now suppose that |F| > (z:%) = (Z:,lc) Then, by repeated applications of Kruskal-Katona (Lovész
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a contradiction. O

Proof [Second proof] Consider an arbitrary bijection f : [n] — Z,. We say that a set A ‘maps to
an interval’ under f if f(A) := {f(a) |a € A} = {i,i+1,...,i+k — 1} for some 0 < i < n—1,
where addition is taken modulo n. We now double count N, the number of pairs (f, A) such that
f:[n] = Z, and f(A) is an interval.

We claim that for any given f, there are at most k sets in F that map to an interval under f. Fix
A € A and suppose that f(A) = {i,i+1,...,i+k—1}. Since F is intersecting, any other interval under
fisof the form {j,7—1,...,j—(k—D}or {j+1,j+2,...,7+k} for some j € {i,i+1,...,i+k—1}.
However, for each j we can get at most one of these two intervals since they are disjoint. Hence, there
are at most & — 1 such intervals and so there are at most k in total. Summing over all n! bijections
[n] — Zn, we see that

N < kn!.

On the other hand, each A € F is an interval under exactly n(n — k)!k! bijections. So,

N = |Fln(n — k)'k!,
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Remark 1 The second proof goes under the name Katona’s circle method. It can also be phrased

and thus

probabilistically: take a uniformly random ‘circular order’ as above, and compute the expectation of
the number of sets in F mapped to intervals.

Remark 2 For k < n/2, equality occurs only when F is a star. For k = n/2, this is not the case.
Definition 2 (t-intersecting) A set system F C 2I" is t-intersecting if [ANB| >t for all A,B € F.

Theorem 2 Let 1 < t < k. Then, there exists no(k,t) such that for all n > ngy, if F C ([Z]) 18
t-intersecting, then |F| < (Z:Z’), with equality if and only if F is isomorphic to {A C [n] | [t] C A}.

Proof Let F be maximal t-intersecting. Then there exist A, B € F such that |[AN B| = t. Assume
there exists C' € F so that AN B ¢ C. Then, every D € F must have at least ¢t + 1 elements in
AU BUC. Thus, for large nj,
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What happens when n is not too large? This is answered by the Ahlswede-Khachatrian theorem.



Example 2 (Frankl sets) Let Fi(n,k,t) = {A € ([Z]) ANt +2i]| >t 44}, for 0 < i < 5L
FEach F; is t-intersecting. Note that the extremal example in Theorem 2 is Fy.

Theorem 3 (Ahlswede-Khachatrian) For any n,k,t the mazimum size of a t-intersecting sub-
family of ([Z]) is achieved by some Fi(n,k,t). Every extremal set system isomorphic to some F;.

To find the optimal ¢ when given n, k, ¢, compare the sizes of consecutive F;. This gives a range for n
as a function of k, ¢. In particular, Fy is the largest when n > ng(k,t) = (t+1)(k —t + 1).

Remark 3 (Erd6s Matching Problem) How large can a set system F C ([ ]) be without contain-
ing s disjoint sets? For s = 2, this is solved by Erdds-Ko-Rado. It is conjectured that the answer is

max((}) — (”_z+1), (ksk_l)) For large n it is known that (}) — ("_EH) is the mazimum.

Let us now consider a different type of intersection property.

Theorem 4 (Bollobas’ Two Families Theorem) Let A = {A;,..., A} and B = {By,...,Bn}

be two set systems such that
e A,NB; =10, for all i, and
e AiNB; #0, for alli #j.

Then,
Z <|Az| + |Bz‘> S 1.
i=1 |4l

Such pairs of set system are called cross-intersecting.
Corollary 1 In the ‘uniform’ case, that is when |A;| = a and |B;| = b for all i, we obtain m < (azb).

Corollary 2 If A is an antichain on [n] and B = A° = {[n]\ A | A € A}, then A and B are

cross-intersecting, so
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giving another proof of the LYM inequality.

Proof Without restriction, assume that all sets involved are subsets of [n]. For a permutation 7 of
[n], we write A <, B if maxm(A) < min7(B), where 7(S) := {n(z) | z € S}. Let m € S,, be chosen
uniformly at random from all permutations of [n]. Then, for each 7, since A; N B; = ), we have

A;| + |B; -1
<o = (W 190)

On the other hand, if A; < B; then A; £, B; for j # i (as A; N B;j and A; N B; are both nonempty).
So the events {A; <r Bi}ic|m) are disjoint. Therefore,
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Let us now consider an application of the Two Families Theorem. For tradition reasons we will use
the language of “hypergraphs” rather than set systems.

Definition 3 (saturated) Let H be a r-uniform hypergraph. We say that a r-uniform hypergraph G
1s H-saturated if G does not contain H as a subgraph, but after adding any missing edge to G, the
resulting hypergraph will contain H as a subgraph.

Definition 4 sat(n, H) := min{e(G) | |G| =n, G is H-saturated}.

For instance, if r = 2 and H = K3 then Mantel’s Theorem tells us that the size of an H-free graph
on n vertices is at most [n?/4], and it is easy to see that sat(n, K3) = n — 1. In higher uniformities,
very little is known about the the largest size of a Kt(r)—free hypergraph. For r = 3,¢ = 4 this is the
famous Turan’s tetrahedron problem. In this light, it is surprising that Bollobas’s theorem determines
the saturation number precisely.

Theorem 5 Let G be an r-uniform hypergraph on [n], and suppose that adding any missing edge to
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In particular, for H = KT(CF)S = ([ﬁ:s]), we have sat(n, H) = (n) -

T

G creates a copy of KT(CF)S Then

(")

Proof Let A = {A1,...,An} = ([Z]) \ E(G) be the set of non-edges of G. For each i, there is an

(r 4+ s)-element set K; D A; such that adding A; to G creates a copy of Kf,l)s with vertex set K;. Let
B; = [n]\ K;. Then

b |Ai|:rand \Bi|=n—7“—sfor each 1;
o A; N B; =0 for each i;

e for distinct 4, j, we have A; N Bj # () — else we would have A; C [n]\ B; = Kj, and so G would
be missing two edges A;, A; from the complete r-graph with vertex set K;, contradicting the
definition of K;.

So we can apply Corollary 1 to obtain
m < <T+(n—r—s)> _ <n—s>.
r r

Remark 4 The above bound is sharp, as witnessed by {A € ([:f]) | AN [s] #0}.

Exercise 1 Ezamine the proof to see if the extremal example is unique up to isomorphism.



