NDMI113 – Extremal Combinatorics

Mykhaylo Tyomkyn

Lecture 4 - Intersecting set systems.

Definition 1 (Intersecting) A set system $\mathcal{F} \subseteq 2^{[n]}$ is intersecting if $A \cap B \neq \emptyset$ for all $A, B \in \mathcal{F}$.

A natural question to ask is how large an intersecting set can be.

Example 1 The 'star' set system $\{A \subseteq [n] \mid 1 \in A\}$ is intersecting and has size 2^{n-1} . It is easy to see that this is the largest possible. Indeed, let $\mathcal{F} \subseteq 2^{[n]}$ be intersecting. Partition $2^{[n]}$ into 2^{n-1} pairs $\{A, [n] \setminus A\}$. At most one set from each pair can be in \mathcal{F} .

It becomes more interesting if we ask about largest intersecting k-uniform families $\mathcal{F} \subseteq {[n] \choose k}$. There are three different regimes:

- 1. k > n/2: The whole layer $\binom{[n]}{k}$ is intersecting.
- 2. k = n/2: This case only occurs if n is even. Take one set from each complementary pair $\{A, [n] \setminus A\}$. Observe that any set system \mathcal{F} constructed in this way is intersecting and has size

$$\frac{1}{2} \binom{n}{k} = \binom{n-1}{k-1}.$$

3. k < n/2: This case is the most interesting. One candidate to be the extremal example is again the 'star', i.e. the family of all k-uniform sets containing a fixed element, say 1. This gives $|\mathcal{F}| = \binom{n-1}{k-1}$. Another candidate may be to take all sets containing two elements from $\{1,2,3\}$. However, the former set system is larger. In fact, the following theorem guarantees that the star is optimal.

Theorem 1 (Erdős-Ko-Rado) For $k \leq n/2$, if $\mathcal{F} \subseteq \binom{[n]}{k}$ is intersecting, then $|\mathcal{F}| \leq \binom{n-1}{k-1}$.

We shall provide two proofs.

Proof [First proof] Let $\mathcal{G} = \{\bar{A} = [n] \setminus A \mid A \in \mathcal{F}\} \subseteq \binom{[n]}{n-k}$. Since \mathcal{F} is intersecting, no $A \in \mathcal{F}$ is contained in any $\bar{B} \in \mathcal{G}$. Therefore, taking the (n-2k)-th shadow of \mathcal{G} , we obtain a k-uniform set system $\mathcal{H} = \partial^{(n-2k)}\mathcal{G}$ such that $\mathcal{F} \cap \mathcal{H} = \emptyset$, and so

$$|\mathcal{F}| + |\mathcal{H}| \le \binom{n}{k}$$
.

Now suppose that $|\mathcal{F}| > \binom{n-1}{k-1} = \binom{n-1}{n-k}$. Then, by repeated applications of Kruskal-Katona (Lovász form), we get

$$|\mathcal{H}| = |\partial^{(n-2k)}\mathcal{G}| \ge \binom{n-1}{n-k-(n-2k)} = \binom{n-1}{k}.$$

1

So,

$$|\mathcal{F}| + |\mathcal{H}| > \binom{n-1}{k-1} + \binom{n-1}{k} = \binom{n}{k},$$

a contradiction. \Box

Proof [Second proof] Consider an arbitrary bijection $f : [n] \to \mathbb{Z}_n$. We say that a set A 'maps to an interval' under f if $f(A) := \{f(a) \mid a \in A\} = \{i, i+1, \ldots, i+k-1\}$ for some $0 \le i \le n-1$, where addition is taken modulo n. We now double count N, the number of pairs (f, A) such that $f : [n] \to \mathbb{Z}_n$ and f(A) is an interval.

We claim that for any given f, there are at most k sets in \mathcal{F} that map to an interval under f. Fix $A \in \mathcal{A}$ and suppose that $f(A) = \{i, i+1, \ldots, i+k-1\}$. Since \mathcal{F} is intersecting, any other interval under f is of the form $\{j, j-1, \ldots, j-(k-1)\}$ or $\{j+1, j+2, \ldots, j+k\}$ for some $j \in \{i, i+1, \ldots, i+k-1\}$. However, for each j we can get at most one of these two intervals since they are disjoint. Hence, there are at most k-1 such intervals and so there are at most k in total. Summing over all n! bijections $[n] \to \mathbb{Z}_n$, we see that

$$N \leq kn!$$
.

On the other hand, each $A \in \mathcal{F}$ is an interval under exactly n(n-k)!k! bijections. So,

$$N = |\mathcal{F}|n(n-k)!k!,$$

and thus

$$|\mathcal{F}| \le \frac{kn!}{n(n-k)!k!} = \frac{k}{n} \binom{n}{k} = \binom{n-1}{k-1}.$$

Remark 1 The second proof goes under the name Katona's circle method. It can also be phrased probabilistically: take a uniformly random 'circular order' as above, and compute the expectation of the number of sets in \mathcal{F} mapped to intervals.

Remark 2 For k < n/2, equality occurs only when \mathcal{F} is a star. For k = n/2, this is not the case.

Definition 2 (t-intersecting) A set system $\mathcal{F} \subseteq 2^{[n]}$ is t-intersecting if $|A \cap B| \ge t$ for all $A, B \in \mathcal{F}$.

Theorem 2 Let $1 \le t \le k$. Then, there exists $n_0(k,t)$ such that for all $n \ge n_0$, if $\mathcal{F} \subseteq \binom{[n]}{k}$ is t-intersecting, then $|\mathcal{F}| \le \binom{n-t}{k-t}$, with equality if and only if \mathcal{F} is isomorphic to $\{A \subseteq [n] \mid [t] \subseteq A\}$.

Proof Let \mathcal{F} be maximal t-intersecting. Then there exist $A, B \in \mathcal{F}$ such that $|A \cap B| = t$. Assume there exists $C \in \mathcal{F}$ so that $A \cap B \not\subseteq C$. Then, every $D \in \mathcal{F}$ must have at least t+1 elements in $A \cup B \cup C$. Thus, for large n,

$$|\mathcal{F}| \le \binom{|A \cup B \cup C|}{t+1} \binom{n}{k-t-1} = O_{k,t}(n^{k-t-1}) < \binom{n-t}{k-t}.$$

What happens when n is not too large? This is answered by the Ahlswede-Khachatrian theorem.

Example 2 (Frankl sets) Let $\mathcal{F}_i(n,k,t) = \{A \in {[n] \choose k} : |A \cap [1,t+2i]| \ge t+i\}$, for $0 \le i \le \frac{n-t}{2}$. Each \mathcal{F}_i is t-intersecting. Note that the extremal example in Theorem 2 is \mathcal{F}_0 .

Theorem 3 (Ahlswede-Khachatrian) For any n, k, t the maximum size of a t-intersecting subfamily of $\binom{[n]}{k}$ is achieved by some $\mathcal{F}_i(n, k, t)$. Every extremal set system isomorphic to some \mathcal{F}_i .

To find the optimal i when given n, k, t, compare the sizes of consecutive \mathcal{F}_i . This gives a range for n as a function of k, t. In particular, \mathcal{F}_0 is the largest when $n \geq n_0(k, t) = (t+1)(k-t+1)$.

Remark 3 (Erdős Matching Problem) How large can a set system $\mathcal{F} \subset \binom{[n]}{k}$ be without containing s disjoint sets? For s=2, this is solved by Erdős-Ko-Rado. It is conjectured that the answer is $\max(\binom{n}{k}-\binom{n-s+1}{k},\binom{ks-1}{k})$. For large n it is known that $\binom{n}{k}-\binom{n-s+1}{k}$ is the maximum.

Let us now consider a different type of intersection property.

Theorem 4 (Bollobás' Two Families Theorem) Let $A = \{A_1, ..., A_m\}$ and $B = \{B_1, ..., B_m\}$ be two set systems such that

- $A_i \cap B_i = \emptyset$, for all i, and
- $A_i \cap B_j \neq \emptyset$, for all $i \neq j$.

Then,

$$\sum_{i=1}^{m} \binom{|A_i| + |B_i|}{|A_i|}^{-1} \le 1.$$

Such pairs of set system are called *cross-intersecting*.

Corollary 1 In the 'uniform' case, that is when $|A_i| = a$ and $|B_i| = b$ for all i, we obtain $m \leq {a+b \choose a}$.

Corollary 2 If \mathcal{A} is an antichain on [n] and $\mathcal{B} = \mathcal{A}^c = \{[n] \setminus A \mid A \in \mathcal{A}\}$, then \mathcal{A} and \mathcal{B} are cross-intersecting, so

$$\sum_{k=0}^{n} \frac{|\mathcal{A} \cap {[n] \choose k}|}{{[n] \choose k}} \le 1,$$

giving another proof of the LYM inequality.

Proof Without restriction, assume that all sets involved are subsets of [n]. For a permutation π of [n], we write $A <_{\pi} B$ if $\max \pi(A) < \min \pi(B)$, where $\pi(S) := \{\pi(x) \mid x \in S\}$. Let $\pi \in S_n$ be chosen uniformly at random from all permutations of [n]. Then, for each i, since $A_i \cap B_i = \emptyset$, we have

$$\mathbb{P}(A_i <_{\pi} B_i) = \binom{|A_i| + |B_i|}{|A_i|}^{-1},$$

On the other hand, if $A_i <_{\pi} B_i$ then $A_j \nleq_{\pi} B_j$ for $j \neq i$ (as $A_i \cap B_j$ and $A_j \cap B_i$ are both nonempty). So the events $\{A_i <_{\pi} B_i\}_{i \in [m]}$ are disjoint. Therefore,

$$1 \ge \mathbb{P}(\bigcup_{i \in [m]} \{A_i <_{\pi} B_i\}) = \sum_{i=1}^{m} \mathbb{P}(A_i <_{\pi} B_i) = \sum_{i=1}^{m} \binom{|A_i| + |B_i|}{|A_i|}^{-1}.$$

Let us now consider an application of the Two Families Theorem. For tradition reasons we will use the language of "hypergraphs" rather than set systems.

Definition 3 (saturated) Let H be a r-uniform hypergraph. We say that a r-uniform hypergraph G is H-saturated if G does not contain H as a subgraph, but after adding any missing edge to G, the resulting hypergraph will contain H as a subgraph.

Definition 4 sat $(n, H) := \min\{e(G) \mid |G| = n, G \text{ is } H\text{-saturated}\}.$

For instance, if r=2 and $H=K_3$ then Mantel's Theorem tells us that the size of an H-free graph on n vertices is at most $\lfloor n^2/4 \rfloor$, and it is easy to see that $\operatorname{sat}(n,K_3)=n-1$. In higher uniformities, very little is known about the the largest size of a $K_t^{(r)}$ -free hypergraph. For r=3,t=4 this is the famous Turan's $tetrahedron\ problem$. In this light, it is surprising that Bollobás's theorem determines the saturation number precisely.

Theorem 5 Let G be an r-uniform hypergraph on [n], and suppose that adding any missing edge to G creates a copy of $K_{r+s}^{(r)}$. Then

$$e(G) \ge \binom{n}{r} - \binom{n-s}{r}.$$

In particular, for $H = K_{r+s}^{(r)} := {r+s \choose r}$, we have $sat(n, H) = {n \choose r} - {n-s \choose r}$.

Proof Let $\mathcal{A} = \{A_1, \dots, A_m\} = {n \choose r} \setminus E(G)$ be the set of non-edges of G. For each i, there is an (r+s)-element set $K_i \supseteq A_i$ such that adding A_i to G creates a copy of $K_{r+s}^{(r)}$ with vertex set K_i . Let $B_i = [n] \setminus K_i$. Then

- $|A_i| = r$ and $|B_i| = n r s$ for each i;
- $A_i \cap B_i = \emptyset$ for each i;
- for distinct i, j, we have $A_i \cap B_j \neq \emptyset$ else we would have $A_i \subseteq [n] \setminus B_j = K_j$, and so G would be missing two edges A_i, A_j from the complete r-graph with vertex set K_i , contradicting the definition of K_i .

So we can apply Corollary 1 to obtain

$$m \le \binom{r + (n - r - s)}{r} = \binom{n - s}{r}.$$

Remark 4 The above bound is sharp, as witnessed by $\{A \in {[n] \choose r} \mid A \cap [s] \neq \emptyset\}$.

Exercise 1 Examine the proof to see if the extremal example is unique up to isomorphism.