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Lecture 3 - The Kruskal-Katona theorem.

Recall that the shift operator Cj→i, for i ̸= j, for a set A ⊆ [n], is defined as

Cj→i(A) =

{
(A \ {j}) ∪ {i} if j ∈ A and i ̸∈ A,

A otherwise.

For a family F ⊆ 2[n], it is defined as

Cj→i(F) = {Cj→i(A) | A ∈ F} ∪ {A ∈ F | Cj→i(A) ∈ F}.

Lemma 1 For 1 ≤ i < j ≤ n and F ⊆
([n]
k

)
, we have |∂(Cj→i(F))| ≤ |∂F|.

Proof Denote G = Cj→i(F). Note that it suffices to show that for any B− ∈ ∂G \ ∂F , we have

i) i ∈ B−, j ̸∈ B− and

ii) (B− \ {i}) ∪ {j} ∈ ∂F \ ∂G,

since then Cj→i : ∂G \ ∂F → ∂F \ ∂G is injective.

Let B− ∈ ∂G \∂F . By definition of the shadow, there exists B ∈ G and x ∈ [n] so that B = B−∪{x}.
Moreover, B /∈ F , as otherwise we would have B− ∈ ∂F . So, B ∈ G \F = Cj→i(F) \F , which implies

i ∈ B and j ̸∈ B. Let

A := (B \ {i}) ∪ {j},

and note that A ∈ F \ G.
To see that i) holds, note first that j /∈ B ⊇ B−, so j /∈ B−. Furthermore, if x ̸= i then i ∈ B \ {x} =

B−. On the other hand, if x = i, we have

B− = B \ {i} ⊆ A ∈ F ,

a contradiction since B− /∈ ∂F by our assumption.

To prove ii) assuming i), we put A− := (B− \ {i}) ∪ {j}. Then A− ⊆ A ∈ F , so A− ∈ ∂F , and we

need to show that A− ̸∈ ∂G. Suppose for the sake of contradiction that A− ∈ ∂G. Then, there exists

z ∈ [n] so that A− ∪ {z} ∈ G. We consider two cases:

1. z = i: Then

A− ∪ {z} = (B− \ {i}) ∪ {j} ∪ {i} = B− ∪ {j} ∈ G.

Since {i, j} ⊂ B− ∪ {j} ∈ Cj→i(F) we must have B− ∪ {j} ∈ F . This implies B− ∈ ∂F , a

contradiction.
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2. z ̸= i: Note that Cj→i(G) = G since G = Cj→i(F). So,

Cj→i(A
− ∪ {z}) = B− ∪ {z} ∈ G.

But then A− ∪ {z} and Cj→i(A
− ∪ {z}) are both in G, so both are in F . So, B− ∪ {z} ∈ F ,

meaning B− ∈ ∂F – again, a contradiction.
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Definition 1 We say that a family F ⊂ 2[n] is (left-)shifted if Cj→i(F) = F for all 1 ≤ i < j ≤ n.

Corollary 1 Let F ⊆
([n]
k

)
. Then there exists a shifted family A ⊆

([n]
k

)
such that |A| = |F| and

|∂A| ≤ |∂F|.

Proof Define the function on the set systems

f(A) :=
∑
A∈A

∑
a∈A

a.

Then, for i < j we see that f(Cj→i(A)) ≤ f(A). In fact, applying a left-shift to A either leaves A
unchanged, or strictly decreases f(A). Hence, applying non-trivial left-shifts to F whenever we can,

the process must terminate after finitely many steps. The resulting family A will be left-shifted, of

size |A| = |F|, and, by Lemma 1, will satisfy |∂A| ≤ |∂F|. 2

Note that any initial segment of colex is shifted. However, the converse is not true – a shifted set

system need not be isomorphic to the initial segment of colex of the same length. For example, initial

segments of lex are also shifted and in general, not isomorphic to initial segments of colex. Thus,

Corollary 1 is not enough for a proof of Kruskal-Katona.

Under a closer inspection, we notice that the mere existence of the colex ordering on
(N
k

)
implies the

following curious fact about the natural numbers.

Observation 1 (k-cascade form) Given k ≥ 1, every integer m ≥ 1 can be uniquely written as

m =

(
ak
k

)
+

(
ak−1

k − 1

)
+ · · ·+

(
as
s

)
,

where ak > ak−1 > · · · > as ≥ s ≥ 1.

Indeed, an inspection of the m-th smallest member of the k-colex readily gives the desired represen-

tation. For example, if m = 9 and k = 3, the corresponding set is 245. The initial segment of 3-colex

of length 9 is therefore (
[4]

3

)
∪
((

[3]

2

)
+ 5

)
∪
((

[2]

1

)
+ {4, 5}

)
,

1 whereby

9 =

(
4

3

)
+

(
3

2

)
+

(
2

1

)
.

1Here, + stands for entering the elements into every member of the set, e.g.
(
[2]
1

)
+ {4, 5} = {145, 245}.
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Exercise 1 Prove algebraically that the k-cascade form is well-defined.

The cascade form of initial segments of colex behaves particularly nicely with respect to shadows.

Observation 2 The initial segment I of k-colex of length

|I| =
(
ak
k

)
+

(
ak−1

k − 1

)
+ · · ·+

(
as
s

)
satisfies

|∂I| =
(

ak
k − 1

)
+

(
ak−1

k − 2

)
+ · · ·+

(
as

s− 1

)
Note that the second expression may no longer represent the (k − 1)-cascade form of |∂I| (although,
it is quite close).

Theorem 1 (Kruskal-Katona restated) Let F ⊆
([n]
k

)
be of size (in k-cascade form)

m = |F| =
(
ak
k

)
+

(
ak−1

k − 1

)
+ · · ·+

(
as
s

)
.

Then

|∂F| ≥
(

ak
k − 1

)
+

(
ak−1

k − 2

)
+ · · ·+

(
as

s− 1

)
.

Proof We proceed by double induction on k (external) and m (internal). For k = 1 and any m the

statement holds trivially. Now let k > 1 and m be fixed. Assuming the induction hypothesis that the

theorem statement holds for all (k′,m′) with either [k′ < k and arbitrary m′] or [k′ = k and m′ < m],

we aim to prove it for any k-uniform set system of size m. So, let F be such a set system.

By Lemma 1 we may assume that F is left-shifted. Let us partition F into

F1 := {A ∈ F | 1 ∈ A} and F0 := F \ F1,

and define

F−
1 := {A \ {1} | A ∈ F1} ⊆ ∂F .

Note that, since the shifts Ci→1 do not change F , for each A ∈ F0 and A− = A \ {i} ∈ ∂F0 we have

A = A− ∪ {1} = Ci→1(A) ∈ F1, and so A− ∈ ∂F1. Hence,

∂F0 ⊆ F−
1 ⊆ ∂F1,

and therefore

|∂F| = |∂F1| = |F−
1 |+ |∂F−

1 |.

We claim that

|F−
1 | ≥

(
ak − 1

k − 1

)
+ · · ·+

(
as − 1

s− 1

)
.
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This would readily imply the induction step statement. Indeed, applying the induction hypothesis2 to

the (k − 1)-uniform family F−
1 we see that

|∂F−
1 | ≥

(
ak − 1

k − 2

)
+ · · ·+

(
as − 1

s− 2

)
(and note that if necessary, we define

(
x
−1

)
= 0). Since |∂F| = |F−

1 |+ |∂F−
1 |, we obtain

|∂F| ≥
((

ak − 1

k − 1

)
+ · · ·+

(
as − 1

s− 1

))
+

((
ak − 1

k − 2

)
+ · · ·+

(
as − 1

s− 2

))
=

((
ak − 1

k − 1

)
+

(
ak − 1

k − 2

))
+ . . .

((
as − 1

s− 1

)
+

(
as − 1

s− 2

))
=

(
ak

k − 1

)
+ · · ·+

(
as

s− 1

)
,

as desired.

It remains to prove the claim

|F−
1 | ≥

(
ak − 1

k − 1

)
+ · · ·+

(
as − 1

s− 1

)
.

Suppose otherwise that

|F−
1 | <

(
ak − 1

k − 1

)
+ · · ·+

(
as − 1

s− 1

)
.

Then

|F0| = m− |F1| >
(
ak − 1

k

)
+

(
ak−1 − 1

k − 1

)
+ · · ·+

(
as − 1

s

)
.

By the induction hypothesis3 applied to the k-uniform family F0 with |F0| < m and the prior estab-

lished fact that ∂F0 ⊆ F−
1 , we conclude that

|F−
1 | ≥ |∂F0| ≥

(
ak − 1

k − 1

)
+

(
ak−1 − 1

k − 2

)
+ · · ·+

(
as − 1

s− 1

)
,

a contradiction. 2

A more easy-to-use form of the Kruskal-Katona is due to Lovász. Recall, that for an arbitrary real

number x and integer k ≥ 0 the (generalized) binomial coefficient function
(
x
k

)
is defined as(

x

k

)
=

x(x− 1) . . . (x− k + 1)

k!
.

For a fixed k this function is strictly monotone increasing in x on [k,∞], and
(
k
k

)
= 1. Hence, any

y ≥ 1 can be uniquely expressed as y =
(
x
k

)
with x ≥ k.

Theorem 2 (Kruskal-Katona, Lovász form) Let F ⊆
([n]
k

)
be of size

(
x
k

)
, where x ≥ k is a real

number. Then

|∂F| ≥
(

x

k − 1

)
.

The proof is analogous to the proof of Theorem 1.
2For this, the right hand side needs to be in (k − 1)-cascade form, which it is, strictly speaking, not, since we might

have s−1 = 0. In that case we ‘shorten’ the cascade form by one term - note that we would estimate it against
(
as−1
0−2

)
= 0.

3A similar remark to the previous footnote applies here.
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