Systems of equations, Analytic geometry

Tung Anh Vu

September 25, 2023

$P_{\text {KAM }}$

FACULTY
OF MATHEMATICS
AND PHYSICS
Charles University

Contact: tung@kam.mff.cuni.cz

Systems of equations

One variable, one equation

Types of equations:

- Linear.

$$
6 x+3=0
$$

- Quadratic:

$$
2 x^{2}+3 x+1=0
$$

- Cubic:

$$
x^{3}-5 x^{2}-2 x+24=0
$$

- Quartic, quintic,...

Systems of equations

One variable, one equation

Types of equations:

- Linear:

$$
6 x+3=0
$$

- Quadratic:

$$
2 x^{2}+3 x+1=0
$$

- Cubic:

$$
x^{3}-5 x^{2}-2 x+24=0
$$

- Quartic, quintic,...
- Can have 0,1 , multiple, or infinitely many solutions.

Solving linear equations

Linear equations can have either:

- zero solutions

$$
7 x+3=7 x+2
$$

- one solution

$$
6 x+9=x-6
$$

- infinitely many solutions

$$
5 x+3-4 x=3+x
$$

Solving quadratic equations

General form

$$
a x^{2}+b x+c=0
$$

where $b, c \in \mathbb{R}$ and $a \in \mathbb{R} \backslash\{0\}$.

Solving quadratic equations

General form

$$
a x^{2}+b x+c=0,
$$

where $b, c \in \mathbb{R}$ and $a \in \mathbb{R} \backslash\{0\}$.
Example
Given $2 x^{2}+3 x+1=0$, we have $a=2, b=3, c=1$.

Solving quadratic equations: quadratic formula

Quadratic formula

$$
x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Solving quadratic equations: quadratic formula

Quadratic formula

$$
x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Task Solve $2 x^{2}+3 x+1=0$ using the quadratic formula.

Solving polynomial equations: by factoring

Rational zero test
Each rational solution x of a polynomial equation is of the form $\frac{p}{q}$ where

- p is a factor of the constant term, and
- q is a factor of the leading term.

Solving polynomial equations: by factoring

Rational zero test
Each rational solution x of a polynomial equation is of the form $\frac{p}{q}$ where

- p is a factor of the constant term, and
- q is a factor of the leading term.

Tasks
Solve the following by factoring:

- $x^{2}+2 x-15=0$,
- $x^{3}-7 x+6=0$.

Multivariate equations

One equation

- Over reals \mathbb{R} has generally infinitely many solutions.
- Over integers \mathbb{Z} may be extremely difficult to solve.
- E.g., Fermat's last theorem.

Two equations, two variables

Number of solutions

- Can have 0,1 , multiple or infinitely many solutions.

Two equations, two variables

Number of solutions

- Can have 0,1 , multiple or infinitely many solutions.
- If the equation is linear, then each equation defines a line in \mathbb{R}^{2}.

Two equations, two variables

Number of solutions

- Can have 0,1 , multiple or infinitely many solutions.
- If the equation is linear, then each equation defines a line in \mathbb{R}^{2}.
- And the solution is the intersection of those lines.

Two equations, two variables

Method of substitution

1. Solve

$$
\begin{aligned}
x^{2}+4 x-y & =7 \\
2 x-y & =-1
\end{aligned}
$$

2. Solve

$$
\begin{array}{r}
-x+y=4 \\
x^{2}+y=3
\end{array}
$$

Two equations, two variables

Method of elimination

1. Solve

$$
\begin{aligned}
& 5 x+3 y=9 \\
& 2 x-4 y=14
\end{aligned}
$$

2. Solve

$$
\begin{array}{r}
x-2 y=3 \\
-2 x+4 y=1
\end{array}
$$

3. Solve

$$
\begin{array}{r}
2 x-y=1 \\
4 x-2 y=2
\end{array}
$$

Analytic geometry

Study of geometry using a coordinate system.

Vectors

Vector: geometric object with direction and magnitude.

Vectors

Vector: geometric object with direction and magnitude.

Example

Suppose we are in the Euclidean plane \mathbb{R}^{2}. Consider points $p=(4,-7)$ and $q=(-1,5)$. Draw the vector from p to q.

Vectors

Vector: geometric object with direction and magnitude.

Example

Suppose we are in the Euclidean plane \mathbb{R}^{2}. Consider points $p=(4,-7)$ and $q=(-1,5)$. Draw the vector from p to q.

Example
Consider the vector $\overrightarrow{p q}$ from the previous example. What is its angle?

What can we do with vectors?

Suppose we have vectors $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^{n}$, and real numbers $\alpha, \beta \in \mathbb{R}$.

What can we do with vectors?

Suppose we have vectors $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^{n}$, and real numbers $\alpha, \beta \in \mathbb{R}$.

- Addition: $\vec{u}+\vec{v}=\left(u_{1}+v_{1}, u_{2}+v_{2}+\cdots+u_{n}+v_{n}\right)$.

What can we do with vectors?

Suppose we have vectors $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^{n}$, and real numbers $\alpha, \beta \in \mathbb{R}$.

- Addition: $\vec{u}+\vec{v}=\left(u_{1}+v_{1}, u_{2}+v_{2}+\cdots+u_{n}+v_{n}\right)$.
- Scalar multiplication: $\alpha \vec{u}=\left(\alpha u_{1}, \alpha u_{2}, \ldots, \alpha u_{n}\right)$.

What can we do with vectors?

Suppose we have vectors $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^{n}$, and real numbers $\alpha, \beta \in \mathbb{R}$.

- Addition: $\vec{u}+\vec{v}=\left(u_{1}+v_{1}, u_{2}+v_{2}+\cdots+u_{n}+v_{n}\right)$.
- Scalar multiplication: $\alpha \vec{u}=\left(\alpha u_{1}, \alpha u_{2}, \ldots, \alpha u_{n}\right)$.

Properties of above operations:

- Commutativity: $\vec{u}+\vec{v}=\vec{v}+\vec{u}$.

What can we do with vectors?

Suppose we have vectors $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^{n}$, and real numbers $\alpha, \beta \in \mathbb{R}$.

- Addition: $\vec{u}+\vec{v}=\left(u_{1}+v_{1}, u_{2}+v_{2}+\cdots+u_{n}+v_{n}\right)$.
- Scalar multiplication: $\alpha \vec{u}=\left(\alpha u_{1}, \alpha u_{2}, \ldots, \alpha u_{n}\right)$.

Properties of above operations:

- Commutativity: $\vec{u}+\vec{v}=\vec{v}+\vec{u}$.
- Associativity: $(\vec{u}+\vec{v})+\vec{w}=\vec{v}+(\vec{u}+\vec{w})$.

What can we do with vectors?

Suppose we have vectors $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^{n}$, and real numbers $\alpha, \beta \in \mathbb{R}$.

- Addition: $\vec{u}+\vec{v}=\left(u_{1}+v_{1}, u_{2}+v_{2}+\cdots+u_{n}+v_{n}\right)$.
- Scalar multiplication: $\alpha \vec{u}=\left(\alpha u_{1}, \alpha u_{2}, \ldots, \alpha u_{n}\right)$.

Properties of above operations:

- Commutativity: $\vec{u}+\vec{v}=\vec{v}+\vec{u}$.
- Associativity: $(\vec{u}+\vec{v})+\vec{w}=\vec{v}+(\vec{u}+\vec{w})$.
- Distributivity over scalar multiplication: $(\alpha+\beta) \vec{u}=\alpha \vec{u}+\beta \vec{u}$.

What can we do with vectors?

Suppose we have vectors $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^{n}$, and real numbers $\alpha, \beta \in \mathbb{R}$.

- Addition: $\vec{u}+\vec{v}=\left(u_{1}+v_{1}, u_{2}+v_{2}+\cdots+u_{n}+v_{n}\right)$.
- Scalar multiplication: $\alpha \vec{u}=\left(\alpha u_{1}, \alpha u_{2}, \ldots, \alpha u_{n}\right)$.

Properties of above operations:

- Commutativity: $\vec{u}+\vec{v}=\vec{v}+\vec{u}$.
- Associativity: $(\vec{u}+\vec{v})+\vec{w}=\vec{v}+(\vec{u}+\vec{w})$.
- Distributivity over scalar multiplication: $(\alpha+\beta) \vec{u}=\alpha \vec{u}+\beta \vec{u}$.
- Distributivity over addition: $\alpha(\vec{u}+\vec{v})=\alpha \vec{u}+\alpha \vec{v}$.

Length of a vector

Computing the length

$$
\|\vec{u}\|=\sqrt{u_{1}^{2}+u_{2}^{2}+\cdots+u_{n}^{2}} .
$$

Length of a vector

Computing the length

$$
\|\vec{u}\|=\sqrt{u_{1}^{2}+u_{2}^{2}+\cdots+u_{n}^{2}}
$$

Is it true that $\|\alpha \vec{u}\|=\alpha\|\vec{u}\|$?

Length of a vector

Computing the length

$$
\|\vec{u}\|=\sqrt{u_{1}^{2}+u_{2}^{2}+\cdots+u_{n}^{2}}
$$

Is it true that $\|\alpha \vec{u}\|=\alpha\|\vec{u}\|$? No, but $\|\alpha \vec{u}\|=|\alpha|\|\vec{u}\|$.

Length of a vector

Computing the length

$$
\|\vec{u}\|=\sqrt{u_{1}^{2}+u_{2}^{2}+\cdots+u_{n}^{2}}
$$

Is it true that $\|\alpha \vec{u}\|=\alpha\|\vec{u}\|$? No, but $\|\alpha \vec{u}\|=|\alpha|\|\vec{u}\|$.
Computing the unit vector

$$
\frac{\vec{u}}{\|\vec{u}\|}
$$

An airplane is descending at $200 \mathrm{~km} / \mathrm{hr}$ at an angle of 30 degrees below the horizon. Find the component form of its velocity vector.

Dot product

Definition

Suppose we have $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^{n}$. The dot product ${ }^{1}$ of \vec{u} and \vec{v} is defined as

$$
\vec{u} \cdot \vec{v}=\left(u_{1} v_{1}, u_{2} v_{2}, \ldots, u_{n} v_{n}\right) .
$$

${ }^{1}$ You will see during your studies that there are multiple types of dot products. This one is usually known as the standard dot product.

Dot product

Definition

Suppose we have $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^{n}$. The dot product ${ }^{1}$ of \vec{u} and \vec{v} is defined as

$$
\vec{u} \cdot \vec{v}=\left(u_{1} v_{1}, u_{2} v_{2}, \ldots, u_{n} v_{n}\right) .
$$

Properties

- Commutativity: $\vec{u} \cdot \vec{v}=\vec{v} \cdot \vec{u}$.

[^0]
Dot product

Definition

Suppose we have $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^{n}$. The dot product ${ }^{1}$ of \vec{u} and \vec{v} is defined as

$$
\vec{u} \cdot \vec{v}=\left(u_{1} v_{1}, u_{2} v_{2}, \ldots, u_{n} v_{n}\right)
$$

Properties

- Commutativity: $\vec{u} \cdot \vec{v}=\vec{v} \cdot \vec{u}$.
- $\overrightarrow{0} \cdot \vec{v}=\overrightarrow{0}$.

[^1]
Dot product

Definition

Suppose we have $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^{n}$. The dot product ${ }^{1}$ of \vec{u} and \vec{v} is defined as

$$
\vec{u} \cdot \vec{v}=\left(u_{1} v_{1}, u_{2} v_{2}, \ldots, u_{n} v_{n}\right) .
$$

Properties

- Commutativity: $\vec{u} \cdot \vec{v}=\vec{v} \cdot \vec{u}$.
- $\overrightarrow{0} \cdot \vec{v}=\overrightarrow{0}$.
- Distributivity: $\vec{u} \cdot(\vec{v}+\vec{w})=\vec{u} \cdot \vec{v}+\vec{u} \cdot \vec{w}$.

[^2]
Dot product

Definition

Suppose we have $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^{n}$. The dot product ${ }^{1}$ of \vec{u} and \vec{v} is defined as

$$
\vec{u} \cdot \vec{v}=\left(u_{1} v_{1}, u_{2} v_{2}, \ldots, u_{n} v_{n}\right) .
$$

Properties

- Commutativity: $\vec{u} \cdot \vec{v}=\vec{v} \cdot \vec{u}$.
- $\overrightarrow{0} \cdot \vec{v}=\overrightarrow{0}$.
- Distributivity: $\vec{u} \cdot(\vec{v}+\vec{w})=\vec{u} \cdot \vec{v}+\vec{u} \cdot \vec{w}$.
- $\vec{v} \cdot \vec{v}=\|\vec{v}\|^{2}$.

[^3]
Dot product

Definition

Suppose we have $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^{n}$. The dot product ${ }^{1}$ of \vec{u} and \vec{v} is defined as

$$
\vec{u} \cdot \vec{v}=\left(u_{1} v_{1}, u_{2} v_{2}, \ldots, u_{n} v_{n}\right) .
$$

Properties

- Commutativity: $\vec{u} \cdot \vec{v}=\vec{v} \cdot \vec{u}$.
- $\overrightarrow{0} \cdot \vec{v}=\overrightarrow{0}$.
- Distributivity: $\vec{u} \cdot(\vec{v}+\vec{w})=\vec{u} \cdot \vec{v}+\vec{u} \cdot \vec{w}$.
- $\vec{v} \cdot \vec{v}=\|\vec{v}\|^{2}$.
- Triangle inequality: $\|\vec{u}+\vec{v}\| \leq\|\vec{u}\|+\|\vec{v}\|$.

[^4]
Dot product in the plane

Let $\vec{u}, \vec{v} \in \mathbb{R}^{2}$, and θ be the angle between \vec{u} and \vec{v}. Then

$$
\vec{u} \cdot \vec{v}=\|\vec{u}\|\|\vec{v}\| \cos \theta .
$$

Dot product in the plane

Let $\vec{u}, \vec{v} \in \mathbb{R}^{2}$, and θ be the angle between \vec{u} and \vec{v}. Then

$$
\vec{u} \cdot \vec{v}=\|\vec{u}\|\|\vec{v}\| \cos \theta
$$

θ in degrees	θ in radians	$\vec{u} \cdot \vec{v}$				
90°	$\frac{\pi}{2} \mathrm{rad}$	0				
0°	0 rad	$\\|\vec{u}\\|\\|\vec{v}\\|$				
180°	$\pi \mathrm{rad}$	$-\\|\vec{u}\\|\\|\vec{v}\\|$				

Projection

Definition

Projection of vector \vec{u} on vector v is the vector

$$
\operatorname{proj}_{v}(u)=\frac{\vec{u} \cdot \vec{v}}{\|\vec{v}\|} \cdot \vec{v}=\frac{\vec{u} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \cdot \vec{v} .
$$

Circles

Definition

A circle is a set of equidistant points from a fixed point (h, k) called the center. The distance from the center to any of the circle points is called the radius.

Circles

Definition

A circle is a set of equidistant points from a fixed point (h, k) called the center. The distance from the center to any of the circle points is called the radius.

Standard form of the equation of a circle

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

1. A circle has center $(2,3)$ and includes the point $(1,4)$. Find its standard equation.
2. A circle has center $(2,3)$ and includes the point $(1,4)$. Find its standard equation.
3. Find the center and the radius of a circle

$$
x^{2}-6 x+y^{2}-2 y+6=0
$$

Ellipses

Definition
An ellipse is the set of points whose sum of distances from two distinct points called foci is constant.

Ellipses

Definition
An ellipse is the set of points whose sum of distances from two distinct points called foci is constant.
Some terminology:

- Center is the midpoint of the foci.

Ellipses

Definition
An ellipse is the set of points whose sum of distances from two distinct points called foci is constant.
Some terminology:

- Center is the midpoint of the foci.
- Major axis is the chord through the foci.

Ellipses

Definition
An ellipse is the set of points whose sum of distances from two distinct points called foci is constant.
Some terminology:

- Center is the midpoint of the foci.
- Major axis is the chord through the foci.
- The major axis intersects the ellipse at vertices.

Ellipses

Definition

An ellipse is the set of points whose sum of distances from two distinct points called foci is constant.
Some terminology:

- Center is the midpoint of the foci.
- Major axis is the chord through the foci.
- The major axis intersects the ellipse at vertices.
- Minor axis is the chord through the center perpendicular to the major axis.

Ellipses

Definition

An ellipse is the set of points whose sum of distances from two distinct points called foci is constant.
Some terminology:

- Center is the midpoint of the foci.
- Major axis is the chord through the foci.
- The major axis intersects the ellipse at vertices.
- Minor axis is the chord through the center perpendicular to the major axis.
- The minor axis intersects the ellipse at co-vertices.

Properties of ellipses

- Consider an ellipse with center at (h, k), foci at $(h \pm c, k)$, vertices at $(h \pm a, k)$, and co-vertices at $(h, k \pm b)$.

Properties of ellipses

- Consider an ellipse with center at (h, k), foci at $(h \pm c, k)$, vertices at ($h \pm a, k$), and co-vertices at $(h, k \pm b)$.
- Sum of distance to foci is $(a+c)+(a-c)=2 a$.

Properties of ellipses

- Consider an ellipse with center at (h, k), foci at ($h \pm c, k$), vertices at ($h \pm a, k$), and co-vertices at $(h, k \pm b)$.
- Sum of distance to foci is $(a+c)+(a-c)=2 a$.
\Rightarrow Distance from a focal point to a co-vertex is a.

Properties of ellipses

- Consider an ellipse with center at (h, k), foci at ($h \pm c, k$), vertices at $(h \pm a, k)$, and co-vertices at $(h, k \pm b)$.
- Sum of distance to foci is $(a+c)+(a-c)=2 a$.
\Rightarrow Distance from a focal point to a co-vertex is a.
$\Rightarrow c^{2}=a^{2}-b^{2}$.

Properties of ellipses

- Consider an ellipse with center at (h, k), foci at $(h \pm c, k)$, vertices at ($h \pm a, k$), and co-vertices at ($h, k \pm b$).
- Sum of distance to foci is $(a+c)+(a-c)=2 a$.
\Rightarrow Distance from a focal point to a co-vertex is a.
$\Rightarrow c^{2}=a^{2}-b^{2}$.
- Eccentricity of an ellipse is defined as $\frac{c}{a}$.

Properties of ellipses

- Consider an ellipse with center at (h, k), foci at $(h \pm c, k)$, vertices at ($h \pm a, k$), and co-vertices at ($h, k \pm b$).
- Sum of distance to foci is $(a+c)+(a-c)=2 a$.
\Rightarrow Distance from a focal point to a co-vertex is a.
$\Rightarrow c^{2}=a^{2}-b^{2}$.
- Eccentricity of an ellipse is defined as $\frac{c}{a}$.

Standard equation

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

1. Find the equation of an ellipse with foci at $(0,1)$ and $(4,1)$ and major axis of length 6 .
2. Find the equation of an ellipse with foci at $(0,1)$ and $(4,1)$ and major axis of length 6 .
3. Find the center and vertices of an ellipse
$x^{2}+4 y^{2}+6 x-8 y+9=0$.

Cross product

Only defined in three dimensional spaces.
Definition
The cross product of $\vec{u}, \vec{v} \in \mathbb{R}^{3}$ is defined as

$$
\vec{u} \times \vec{v}=\left(u_{2} v_{3}-u_{3} v_{2}, u_{3} v_{1}-u_{1} v_{3}, u_{1} v_{2}-u_{2} v_{1}\right) .
$$

Cross product: geometric properties

Let $\vec{u}, \vec{v} \in \mathbb{R}^{3}$, and θ be the angle between them.

Cross product: geometric properties

Let $\vec{u}, \vec{v} \in \mathbb{R}^{3}$, and θ be the angle between them.

- $\vec{u} \times \vec{v}$ is orthogonal to both \vec{u} and \vec{v}.
- The "orthogonal direction" is determined by convention.

Cross product: geometric properties

Let $\vec{u}, \vec{v} \in \mathbb{R}^{3}$, and θ be the angle between them.

- $\vec{u} \times \vec{v}$ is orthogonal to both \vec{u} and \vec{v}.
- The "orthogonal direction" is determined by convention.
- $\vec{u} \times \vec{v}=\|\vec{u}\|\|\vec{v}\| \sin (\theta) \vec{n}$ where \vec{n} is the unit vector orthogonal to \vec{u} and \vec{v}.

Cross product: geometric properties

Let $\vec{u}, \vec{v} \in \mathbb{R}^{3}$, and θ be the angle between them.

- $\vec{u} \times \vec{v}$ is orthogonal to both \vec{u} and \vec{v}.
- The "orthogonal direction" is determined by convention.
- $\vec{u} \times \vec{v}=\|\vec{u}\|\|\vec{v}\| \sin (\theta) \vec{n}$ where \vec{n} is the unit vector orthogonal to \vec{u} and \vec{v}.
- $\|\vec{u} \times \vec{v}\|$ is the area of the parallelogram between \vec{u} and \vec{v}.

Lines and planes

Parametric equation of a line
Let $t \in \mathbb{R}$ be a parameter.

$$
x=x_{1}+a t ; y=y_{1}+b t ; z=z_{1}+b t
$$

Symmetric equation of a line

$$
\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}
$$

Lines and planes

Parametric equation of a line
Let $t \in \mathbb{R}$ be a parameter.

$$
x=x_{1}+a t ; y=y_{1}+b t ; z=z_{1}+b t
$$

Symmetric equation of a line

$$
\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}
$$

Exercise

Find the parametric and the symmetric equation of a line passing through points $(-2,1,0)$ and $(1,3,5)$.

Lines and planes

- Consider a plane that passes through the point $\left(x_{1}, y_{1}, z_{1}\right)$ and has a normal vector (a, b, c).

Lines and planes

- Consider a plane that passes through the point $\left(x_{1}, y_{1}, z_{1}\right)$ and has a normal vector (a, b, c).
- Then for any point (x, y, z) in the plane we have

$$
(a, b, c) \cdot\left(x-x_{1}, y-y_{1}, z-z_{1}\right)=0
$$

Lines and planes

- Consider a plane that passes through the point $\left(x_{1}, y_{1}, z_{1}\right)$ and has a normal vector (a, b, c).
- Then for any point (x, y, z) in the plane we have

$$
(a, b, c) \cdot\left(x-x_{1}, y-y_{1}, z-z_{1}\right)=0
$$

\Rightarrow Standard equation of a plane

$$
a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0
$$

Lines and planes

- Consider a plane that passes through the point $\left(x_{1}, y_{1}, z_{1}\right)$ and has a normal vector (a, b, c).
- Then for any point (x, y, z) in the plane we have

$$
(a, b, c) \cdot\left(x-x_{1}, y-y_{1}, z-z_{1}\right)=0 .
$$

\Rightarrow Standard equation of a plane

$$
a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0
$$

- General form of the equation of a plane

$$
a x+b y+c z+d=0 .
$$

1. Find the general equation of the plane passing through $(2,1,1),(0,4,1)$, and $(-2,1,4)$.
2. Find the general equation of the plane passing through $(2,1,1),(0,4,1)$, and $(-2,1,4)$.
3. Find the intersection of planes $x-2 y+z=0$ and $2 x+3 y-2 z=0$.

[^0]: ${ }^{1}$ You will see during your studies that there are multiple types of dot products. This one is usually known as the standard dot product.

[^1]: ${ }^{1}$ You will see during your studies that there are multiple types of dot products. This one is usually known as the standard dot product.

[^2]: ${ }^{1}$ You will see during your studies that there are multiple types of dot products. This one is usually known as the standard dot product.

[^3]: ${ }^{1}$ You will see during your studies that there are multiple types of dot products. This one is usually known as the standard dot product.

[^4]: ${ }^{1}$ You will see during your studies that there are multiple types of dot products. This one is usually known as the standard dot product.

