1. Find all solutions:

$$
\begin{array}{r}
3 x+y=2 \\
x^{3}+y-2=0
\end{array}
$$

2. Find all solutions:

$$
\begin{aligned}
2 x^{2}-2 x-y & =14 \\
2 x-y & =-2
\end{aligned}
$$

3. Find all solutions:

$$
\begin{array}{r}
x^{3}-y=0 \\
x-y=0
\end{array}
$$

4. Find all solutions:

$$
\begin{aligned}
y & =x^{2} \\
x^{2}+(y-2)^{2} & =4
\end{aligned}
$$

5. Find all solutions:

$$
\begin{aligned}
& 3 x^{2}+2 y^{2}=35 \\
& 4 x^{2}-3 y^{2}=24
\end{aligned}
$$

6. Find all solutions:

$$
\begin{aligned}
x^{2}-x y+y^{2} & =21 \\
x^{2}+2 x y-8 y^{2} & =0
\end{aligned}
$$

7. Find all solutions:

$$
\begin{aligned}
4 x+y-3 z & =11 \\
2 x-3 y+2 z & =9 \\
x+y+z & =-3
\end{aligned}
$$

8. Find all solutions:

$$
\begin{array}{r}
3 x-2 y+4 z=1 \\
x+y-2 z=3 \\
2 x-3 y+6 z=8
\end{array}
$$

9. Find all solutions:

$$
\begin{aligned}
x-y+2 z & =2 \\
x+2 y-z & =5 \\
5 x-8 y+13 z & =7
\end{aligned}
$$

10. Find the equation of the parabola $y=a x^{2}+b x+c$ that passes through the points $(2,0),(3,-1)$, and $(4,0)$.
11. Find the unit vector in the same direction as $(-24,-7)$.
12. Find a vector with magnitude 3 in the same direction as $(4,-4)$.
13. Find the magnitude of the vector $(-\sqrt{3}, 3)$.
14. Find the dot product of vectors $(-4,1)$ and $(2,-3)$.
15. Find a value k so that vectors $(2,4)$ and $(k,-5)$ are orthogonal.
16. Let $u=(3,4)$ and $v=(8,2)$. Find the projection of u onto v. Then write u as a sum of two orthogonal vectors with $\operatorname{proj}_{v}(u)$ being one of them.
17. Find the equation of the circle $x^{2}+y^{2}+D x+E y+F=0$ that passes through the points $(-3,-1)$, $(2,4)$, and $(-6,8)$.
18. Identify the center and the radius of the circle $x^{2}-14 x+y^{2}+8 y+40=0$.
19. Find the equation of the tangent line to the circle $x^{2}+y^{2}=25$ at the point $(3,-4)$.
20. Find the center, vertices, foci, and eccentricity of the ellipse $\frac{(x-4)^{2}}{16}+\frac{(y+1)^{2}}{25}=1$.
21. Consider the ellipse defined by $9 x^{2}+4 y^{2}+36 x-24 y+36=0$. Find the standard form of the equation of the ellipse. Find the ellipse's center, vertices, foci, and eccentricity.
22. Find the distance between points $(-1,4,-2)$ and $(6,0,9)$.
23. Let $\vec{u}=(6,2,1)$ and $\vec{v}=(1,3,-2)$. Find the cross product $\vec{u} \times \vec{v}$. Show that it is orthogonal to both \vec{u} and \vec{v}.
24. Let $\vec{u}=(1,1,-1)$, and $\vec{v}=(1,1,1)$. Find a unit vector that is orthogonal to both \vec{u} and \vec{v}.
25. Let $\vec{u}=(2,2,-3)$ and $\vec{v}=(0,2,3)$. Find the area of the parallelogram that has \vec{u} and \vec{v} as adjacent sides.
26. Find the area of the triangle with vertices $(0,0,0),(1,2,3)$, and $(-3,0,0)$.
27. Let $p=(-4,-1,0)$, and $\vec{v}=(3,8,-6)$. Find a set of parametric equations and a set of symmetric equations for the line that passes through p and is parallel to \vec{v}.
28. Find the general form of the equation of the plane that passes through $(5,6,3)$ and is normal to the vector $(-2,1,-2)$.
29. Find the general form of the equation of the plane that passes through the points $(2,3,-2),(3,4,2)$ and $(1,-1,0)$.
30. Find a set of parametric equations of the line that passes through $(2,3,4)$ and is parallel to the $x z$-plane and the $y z$-plane.
31. Consider the planes $3 x-4 y+5 z=6$ and $x+y-z=2$. Find parametric equations of their line of intersection.
