1. Show that VERTEX COVER is FPT with parameter treewidth. Meaning that given $k \in \mathbb{N}$, we can in time $f(t)n^{\mathcal{O}(1)}$ determine whether an input graph G with t = tw(G) has a vertex cover of size at most k for some computable function f.

Can you also do it in time $c^t n^{\mathcal{O}(1)}$ for some constant c?

- In the PLANAR VERTEX COVER problem, we are given a planar graph G and an integer k. The goal is to determine whether it has a vertex cover of size at most k.
 Can you do it in time 2^{O(√k)}n^{O(1)} for some constant?
- Show that HAMILTONIAN CYCLE is FPT with parameter treewidth.
 Hint. In the dynamic program, you will need more than just the information from the subtree.
- 4. Show that STEINER TREE is FPT with parameter treewidth.