- 1. What is the treewidth of the following graphs? If you are struggling, try to give just an upper bound.
 - a) A complete graph K_n .
 - b) A complete bipartite graph $K_{n,m}$.
 - c) A forest.
 - d) A cycle C_n .
 - e) A cube Q_3 .
 - f) A $m \times n$ grid $\boxplus_{m,n}$.
- 2. Show that for every minor H of graph G, we have $tw(H) \le tw(G)$.
- 3. Prove the following lemma. It says something to the effect that given a tree decomposition, we can always find a nice tree decomposition in polynomial time.

If a graph G admits a tree decomposition of width at most k, then it also admits a nice tree decomposition of width at most k. Moreover given a tree decomposition $\mathcal{T} = (T, \{X_t\}_{t \in V(T)})$ of G of width at most k, one can in time $\mathcal{O}(k^2 \cdot \max\{|V(T)|, |V(G)|\})$ compute a nice tree decomposition of G of width at most k that has at most $\mathcal{O}(k|V(G)|)$ nodes.

- 4. How can subdividing an edge of a graph G change its treewidth? Can in increase or decrease?
- 5. Show that the treewidth of a graph G is equal to the maximum treewidth of its biconnected components.