Definition. Let \mathcal{A} be a family of sets (without duplicates) over a universe \mathcal{U}. A sunflower with k petals and a core Y is a collection of sets $S_{1}, \ldots, S_{k} \in \mathcal{A}$ such that $S_{i} \cap S_{j}=Y$ for all $i \neq j$; the sets $S_{i} \backslash Y$ are petals and we require none of them to be empty. Note that a family of pairwise disjoint sets is a sunflower (with an empty core).
Sunflower lemma. Let \mathcal{A} be a family of sets (without duplicates) over a universe \mathcal{U}, such that each set in \mathcal{A} has cardinality exactly d. If $|\mathcal{A}|>d!(k-1) d$, then \mathcal{A} contains a sunflower with k petals and such a sunflower can be computed in time polynomial in $|\mathcal{A}|,|\mathcal{U}|, k$.
Problem: d-Hitting Set
Input: A family of sets \mathcal{A} (without duplicates) over a universe \mathcal{U}, such that each set in \mathcal{A} has cardinality exactly d, integer $k \in \mathbb{N}$.
Output: Is the a subset $H \subseteq \mathcal{U}$ of size at most k such that every set $S \in \mathcal{A}$ contains at least one element of H ?

1. Design a kernel for d-Hitting Set with at most $d!k^{d} d$ sets and at most $d!k^{d} d^{2}$ elements.
2. Have you ever wondered how to prove that a problem with an FPT algorithm does not have a polynomial kernel? In this exercise I will sketch something like that. More details are in Section 15 of the book.
In the Longest Path problem, we are given a graph $G=(V, E)$, and an integer k. The goal is to find a path of length at least k (meaning that it has to visit k different vertices).
Suppose there exists a kenel for Longest Path of size k^{3}. Now, let us take k^{7} instances of Longest Path and create a new instance I from their disjoint union. Clearly, I is a YES-instance if and only if one of the original instances was a YES-instance.

Once we apply the kernelization procedure on I, something has to be wrong with the resulting "kernel". Can you find what it is?
This result is conditional: in literature you will see statements like "Problem X does not admit a polynomial kernel unless NP \subseteq coNP/poly".
3. We will now make a guided proof of Sunflower lemma.

We prove it by induction on d. The statement is trivial for $d=1$ as a family of pairwise disjoint sets form a sunflower.
So suppose $d \geq 2$, let \mathcal{A} be a family of sets of cardinality d over universe \mathcal{U} such that $|\mathcal{A}|>d!(k-1)^{d}$. Let $\mathcal{G}=\left\{S_{1}, \ldots, S_{\ell}\right\} \subseteq \mathcal{A}$ be an inclusion-wise maximal family of pairwise disjoint sets in \mathcal{A}.

- If $\ell \geq k$, then we are done. Why?

So suppose $\ell<k$. Let $S=\bigcup_{i=1}^{\ell} S_{i}$. Because \mathcal{G} is maximal, every set $A \in \mathcal{A}$ intersects at least one set from \mathcal{G}, i.e., $A \cap S \neq \emptyset$.

- Using this fact, show that there is an element $u \in \mathcal{U}$ contained in many sets from \mathcal{A} (maybe by using the averaging argument; then find a upper bound on $|S|$). We will remove this element u, apply the induction hypothesis on sets which used to contain u to obtain a sunflower and add it back to get a sunflower. So make sure that "many" is large enough.
- And use the proof to give a polynomial algorithm for finding a sunflower.

4. Show that Feedback Vertex Set parameterized by solution size k on undirected d-regular graphs admits a kernel of size $\mathcal{O}(k)$.
5. An undirected graph G is called perfect if for every induced subgraph H of G, the size of the largest clique in H is same as the chromatic number of H. Obtain a kernel with $\mathcal{O}\left(k^{2}\right)$ vertices for Odd Cycle Transversal on perfect graphs.
Hint: Give a necessary and sufficient condition for a perfect graph being bipartite.
No homework this week :)
