1. Let M(G) be the size of a maximum matching of graph G.

Give an algorithm for VERTEX COVER ABOVE MATCHING running in time $4^{k-M(G)}n^{\mathcal{O}(1)}$. Meaning that the parameter is not the size of the solution but the "excess" above the lower bound given by the maximum matching.

VARIABLE DELETION ALMOST 2-SAT **Input:** 2-CNF formula $\varphi = C_1 \land \cdots \land C_m$ on variables x_1, \ldots, x_n , parameter $k \in \mathbb{N}$. **Output:** Is there a subset of variables $\mathcal{X} \subseteq \{x_i\}_{i=1}^n$ of size at most k so that φ without clauses that contain a variable of \mathcal{X} is satisfiable?

2. Show an algorithm for VARIABLE DELETION ALMOST 2-SAT running in time $4^k n^{\mathcal{O}(1)}$.

Hint: Proceed as in the algorithm for ODD CYCLE TRANSVERSAL from the lecture.

ALMOST 2-SAT **Input:** 2-CNF formula $\varphi = C_1 \land \cdots \land C_m$ on variables x_1, \ldots, x_n , parameter $k \in \mathbb{N}$. **Output:** Is there a subset of clauses $\mathcal{C} \subseteq \{C_i\}_{i=1}^m$ of size at most k so that $\varphi \setminus \mathcal{C}$ is satisfiable?

3. Show an algorithm for ALMOST 2-SAT running in time $4^k n^{\mathcal{O}(1)}$.

The exercises above might be too easy. So here are some extra.

Definition. Let \mathcal{A} be a family of sets (without duplicates) over a universe \mathcal{U} . A sumflower with k petals and a core Y is a collection of sets $S_1, \ldots, S_k \in \mathcal{A}$ such that $S_i \cap S_j = Y$ for all $i \neq j$; the sets $S_i \setminus Y$ are petals and we require none of them to be empty. Note that a family of pairwise disjoint sets is a sunflower (with an empty core).

Sunflower lemma. Let \mathcal{A} be a family of sets (without duplicates) over a universe \mathcal{U} , such that each set in \mathcal{A} has cardinality exactly d. If $|\mathcal{A}| > d!(k-1)d$, then \mathcal{A} contains a sunflower with k petals and such a sunflower can be computed in time polynomial in $|\mathcal{A}|$, $|\mathcal{U}|$, k. d-HITTING SET

Input: A family of sets \mathcal{A} (without duplicates) over a universe \mathcal{U} , such that each set in \mathcal{A} has cardinality exactly d, integer $k \in \mathbb{N}$.

Output: Is the a subset $H \subseteq \mathcal{U}$ of size at most k such that every set $S \in \mathcal{A}$ contains at least one element of H?

4. Design a kernel for d-HITTING SET with at most $d!k^d d$ sets and at most $d!k^d d^2 elements$.