1. Let $M(G)$ be the size of a maximum matching of graph G.

Give an algorithm for Vertex Cover Above Matching running in time $4^{k-M(G)} n^{\mathcal{O}(1)}$. Meaning that the parameter is not the size of the solution but the "excess" above the lower bound given by the maximum matching.

Variable Deletion Almost 2-SAT
Input: 2-CNF formula $\varphi=C_{1} \wedge \cdots \wedge C_{m}$ on variables x_{1}, \ldots, x_{n}, parameter $k \in \mathbb{N}$.
Output: Is there a subset of variables $\mathcal{X} \subseteq\left\{x_{i}\right\}_{i=1}^{n}$ of size at most k so that φ without clauses that contain a variable of \mathcal{X} is satisfiable?
2. Show an algorithm for Variable Deletion Almost 2-SAT running in time $4^{k} n^{\mathcal{O}(1)}$.

Hint: Proceed as in the algorithm for Odd Cycle Transversal from the lecture.
Almost 2-SAT
Input: 2-CNF formula $\varphi=C_{1} \wedge \cdots \wedge C_{m}$ on variables x_{1}, \ldots, x_{n}, parameter $k \in \mathbb{N}$.
Output: Is there a subset of clauses $\mathcal{C} \subseteq\left\{C_{i}\right\}_{i=1}^{m}$ of size at most k so that $\varphi \backslash \mathcal{C}$ is satisfiable?
3. Show an algorithm for Almost 2-SAT running in time $4^{k} n^{\mathcal{O}(1)}$.

The exercises above might be too easy. So here are some extra.
Definition. Let \mathcal{A} be a family of sets (without duplicates) over a universe \mathcal{U}. A sunflower with k petals and a core Y is a collection of sets $S_{1}, \ldots, S_{k} \in \mathcal{A}$ such that $S_{i} \cap S_{j}=Y$ for all $i \neq j$; the sets $S_{i} \backslash Y$ are petals and we require none of them to be empty. Note that a family of pairwise disjoint sets is a sunflower (with an empty core).
Sunflower lemma. Let \mathcal{A} be a family of sets (without duplicates) over a universe \mathcal{U}, such that each set in \mathcal{A} has cardinality exactly d. If $|\mathcal{A}|>d!(k-1) d$, then \mathcal{A} contains a sunflower with k petals and such a sunflower can be computed in time polynomial in $|\mathcal{A}|,|\mathcal{U}|, k$.
d-Hitting Set
Input: A family of sets \mathcal{A} (without duplicates) over a universe \mathcal{U}, such that each set in \mathcal{A} has cardinality exactly d, integer $k \in \mathbb{N}$.
Output: Is the a subset $H \subseteq \mathcal{U}$ of size at most k such that every set $S \in \mathcal{A}$ contains at least one element of H ?
4. Design a kernel for d-Hitting Set with at most $d!k^{d} d$ sets and at most $d!k^{d} d^{2}$ elements.

