1. A feedback vertex set Z of graph G is a subset of vertices such that $G-Z$ is a forest.

Show that if a graph on n vertices has minimum degree at least 3 , then it contains a cycle of length at most $2\lceil\log n\rceil$. Use this to design a $(\log n)^{\mathcal{O}(k)} n^{\mathcal{O}(1)}$-time algorithm for Feedback Vertex Set on undirected graphs. Is this an FPT algorithm for Feedback Vertex Set?
2. In the Min-Ones-r-SAT problem, we are given an r-CNF formula φ and an integer k. The objective is to decide whether there exists a satisfying assignment for φ with at most k variables set to true. Show that Min-OnES- r-SAT admits an algorithm with running time $f(r, k) n^{\mathcal{O}(1)}$ for some computable function f.
3. Describe an algorithm running in time $\mathcal{O}\left(1.5^{n}\right)$ which finds the number of independent sets (or, equivalently, vertex covers) in a given n-vertex graph.
You may need to prove that counting the number of independent sets in graphs of degree at most 2 is polynomial time solvable.
4. Let \mathcal{F} be a set of graphs. We say that a graph G is \mathcal{F}-free if G does not contain any induced subgraph isomorphic to a graph in \mathcal{F}; in this context the elements of \mathcal{F} are sometimes called forbidden induced subgraphs. For a fixed set \mathcal{F}, consider a problem where, given a graph G and an integer k, we ask to turn G into a \mathcal{F}-free graph by:
(vertex deletion) deleting at most k vertices;
(edge deletion) deleting at most k edges;
(completion) adding at most k edges;
(edition) performing at most k editions, where every edition is adding or deleting one edge.
Considering \mathcal{F} to be a fixed set means that $|\mathcal{F}| \in \mathcal{O}(1)$ and every graph in \mathcal{F} has size $\mathcal{O}(1)$.
Prove that, if \mathcal{F} is finite, then there exists a $2^{\mathcal{O}(k)} n^{\mathcal{O}(1)}$-time FPT algorithm for each of the four aforementioned problems. (Note that the constants hidden in the $\mathcal{O}()$-notation may depend on the set \mathcal{F}.)

